1
|
Spaide RF, Ooto S, Curcio CA. Subretinal drusenoid deposits AKA pseudodrusen. Surv Ophthalmol 2018; 63:782-815. [PMID: 29859199 DOI: 10.1016/j.survophthal.2018.05.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/30/2023]
Abstract
A distinction between conventional drusen and pseudodrusen was first made in 1990, and more recently knowledge of pseudodrusen, more accurately called subretinal drusenoid deposits (SDDs), has expanded. Pseudodrusen have a bluish-white appearance by biomicroscopy and color fundus photography. Using optical coherence tomography, pseudodrusen were found to be accumulations of material internal to the retinal pigment epithelium that could extend internally through the ellipsoid zone. These deposits are more commonly seen in older eyes with thinner choroids. Histologic evaluation of these deposits revealed aggregations of material in the subretinal space between photoreceptors and retinal pigment epithelium. SDDs contain some proteins in common with soft drusen but differ in lipid composition. Many studies reported that SDDs are strong independent risk factors for late age-related macular degeneration. Geographic atrophy and type 3 neovascularization are particularly associated with SDD. Unlike conventional drusen, eyes with SDD show slow dark adaptation and poor contrast sensitivity. Outer retinal atrophy develops in eyes with regression of SDD, a newly recognized form of late age-related macular degeneration. Advances in imaging technology have enabled many insights into this condition, including associated photoreceptor, retinal pigment epithelium, and underlying choroidal changes.
Collapse
Affiliation(s)
- Richard F Spaide
- Vitreous Retina Macula Consultants of New York and LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, New York, USA.
| | - Sotaro Ooto
- Vitreous Retina Macula Consultants of New York and LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, New York, USA; Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Christine A Curcio
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabamas, USA
| |
Collapse
|
2
|
Chew AL, Sampson DM, Chelva E, Khan JC, Chen FK. Perifoveal interdigitation zone loss in hydroxychloroquine toxicity leads to subclinical bull's eye lesion appearance on near-infrared reflectance imaging. Doc Ophthalmol 2017; 136:57-68. [PMID: 29124422 PMCID: PMC5811575 DOI: 10.1007/s10633-017-9615-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 09/29/2017] [Indexed: 11/21/2022]
Abstract
Purpose To characterize the ultrastructural and functional correlates of hydroxychloroquine (HCQ)-induced subclinical bull’s eye lesion seen on near-infrared reflectance (NIR) imaging. Methods An asymptomatic 54-year-old male taking HCQ presented with paracentral ring-like scotoma, abnormal multifocal electroretinography (mfERG) and preserved ellipsoid zone on optical coherence tomography (OCT). Dense raster OCT was performed to create en face reflectivity maps of the interdigitation zone. Macular Integrity Assessment (MAIA) microperimetry and mfERG findings were compared with NIR imaging, en face OCT, retinal thickness profiles and wave-guiding cone density maps derived from flood-illumination adaptive optics (AO) retinal photography. Results The bull’s eye lesion is an oval annular zone of increased reflectivity on NIR with an outer diameter of 1450 µm. This region corresponds exactly to an area of preserved interdigitation zone reflectivity in en face OCT images and of normal cone density on AO imaging. Immediately surrounding the bull’s eye lesion is an annular zone (3°–12° eccentricity) of depressed retinal sensitivity on MAIA and reduced amplitude density on mfERG. Wave-guiding cone density at 2° temporal was 25,400 per mm2. This declined rapidly to 12,900 and 1200 per mm2 at 3° and 4°. Conclusion Multimodal imaging illustrated pathology in the area surrounding the NIR bull’s eye, characterized by reduced reflectance, wave-guiding cone density and retinal function. Further studies are required to investigate whether the bull’s eye on NIR imaging and en face OCT is prominent or consistent enough for diagnostic use. Electronic supplementary material The online version of this article (doi:10.1007/s10633-017-9615-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Avenell L Chew
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Crawley, WA, 6009, Australia
| | - Danuta M Sampson
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Crawley, WA, 6009, Australia
| | - Enid Chelva
- Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia
| | - Jane C Khan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Crawley, WA, 6009, Australia.,Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, 6000, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Crawley, WA, 6009, Australia. .,Department of Ophthalmology, Royal Perth Hospital, Perth, WA, 6000, Australia.
| |
Collapse
|
3
|
Yiu G, Tieu E, Munevar C, Wong B, Cunefare D, Farsiu S, Garzel L, Roberts J, Thomasy SM. In Vivo Multimodal Imaging of Drusenoid Lesions in Rhesus Macaques. Sci Rep 2017; 7:15013. [PMID: 29101353 PMCID: PMC5670133 DOI: 10.1038/s41598-017-14715-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/16/2017] [Indexed: 01/19/2023] Open
Abstract
Nonhuman primates are the only mammals to possess a true macula similar to humans, and spontaneously develop drusenoid lesions which are hallmarks of age-related macular degeneration (AMD). Prior studies demonstrated similarities between human and nonhuman primate drusen based on clinical appearance and histopathology. Here, we employed fundus photography, spectral domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF), and infrared reflectance (IR) to characterize drusenoid lesions in aged rhesus macaques. Of 65 animals evaluated, we identified lesions in 20 animals (30.7%). Using the Age-Related Eye Disease Study 2 (AREDS2) grading system and multimodal imaging, we identified two distinct drusen phenotypes - 1) soft drusen that are larger and appear as hyperreflective deposits between the retinal pigment epithelium (RPE) and Bruch's membrane on SD-OCT, and 2) hard, punctate lesions that are smaller and undetectable on SD-OCT. Both exhibit variable FAF intensities and are poorly visualized on IR. Eyes with drusen exhibited a slightly thicker RPE compared with control eyes (+3.4 μm, P=0.012). Genetic polymorphisms associated with drusenoid lesions in rhesus monkeys in ARMS2 and HTRA1 were similar in frequency between the two phenotypes. These results refine our understanding of drusen development, and provide insight into the absence of advanced AMD in nonhuman primates.
Collapse
Affiliation(s)
- Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, USA.
| | - Eric Tieu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California, USA
| | - Christian Munevar
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Brittany Wong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - David Cunefare
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Laura Garzel
- California National Primate Research Center, Davis, California, USA
| | - Jeffrey Roberts
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,California National Primate Research Center, Davis, California, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
4
|
Paavo M, Lee W, Merriam J, Bearelly S, Tsang S, Chang S, Sparrow JR. Intraretinal Correlates of Reticular Pseudodrusen Revealed by Autofluorescence and En Face OCT. Invest Ophthalmol Vis Sci 2017; 58:4769-4777. [PMID: 28973322 PMCID: PMC5624777 DOI: 10.1167/iovs.17-22338] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We sought to determine whether information revealed from the reflectance, autofluorescence, and absorption properties of RPE cells situated posterior to reticular pseudodrusen (RPD) could provide insight into the origins and structure of RPD. Methods RPD were studied qualitatively by near-infrared fundus autofluorescence (NIR-AF), short-wavelength fundus autofluorescence (SW-AF), and infrared reflectance (IR-R) images, and the presentation was compared to horizontal and en face spectral domain optical coherence tomographic (SD-OCT) images. Images were acquired from 23 patients (39 eyes) diagnosed with RPD (mean age 80.7 ± 7.1 [SD]; 16 female; 4 Hispanics, 19 non-Hispanic whites). Results In SW-AF, NIR-AF, and IR-R images, fundus RPD were recognized as interlacing networks of small scale variations in IR-R and fluorescence (SW-AF, NIR-AF) intensities. Darkened foci of RPD colocalized in SW-AF and NIR-AF images, and in SD-OCT images corresponded to disturbances of the interdigitation (IZ) and ellipsoid (EZ) zones and to more pronounced hyperreflective lesions traversing photoreceptor-attributable bands in SD-OCT images. Qualitative assessment of the outer nuclear layer (ONL) revealed thinning as RPD extended radially from the outer to inner retina. In en face OCT, hyperreflective areas in the EZ band correlated topographically with hyporeflective foci at the level of the RPE. Conclusions The hyperreflective lesions corresponding to RPD in SD-OCT scans are likely indicative of degenerating photoreceptor cells. The darkened foci at positions of RPD in NIR-AF and en face OCT images indicate changes in the RPE monolayer with the reduced NIR-AF and en face OCT signal suggesting a reduction in melanin that could be accounted for by RPE thinning.
Collapse
Affiliation(s)
- Maarjaliis Paavo
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | - Winston Lee
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | - John Merriam
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | - Srilaxmi Bearelly
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | - Stephen Tsang
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| | - Stanley Chang
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States
| |
Collapse
|
5
|
Rabiolo A, Sacconi R, Cicinelli MV, Querques L, Bandello F, Querques G. Spotlight on reticular pseudodrusen. Clin Ophthalmol 2017; 11:1707-1718. [PMID: 29033536 PMCID: PMC5614782 DOI: 10.2147/opth.s130165] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss in patients >50 years old. The hallmark of the disease is represented by the accumulation of extracellular material between retinal pigment epithelium and the inner collagenous layer of Bruch's membrane, called drusen. Although identified almost 30 years ago, reticular pseudodrusen (RPD) have been recently recognized as a distinctive phenotype. Unlike drusen, they are located in the subretinal space. RPD are strongly associated with late AMD, especially geographic atrophy, type 2 and 3 choroidal neovascularization, which, in turn, are less common in typical AMD. RPD identification is not straightforward at fundus examination, and their identification should employ at least 2 different imaging modalities. In this narrative review, we embrace all aspects of RPD, including history, epidemiology, histology, imaging, functional test, natural history and therapy.
Collapse
Affiliation(s)
- Alessandro Rabiolo
- Department of Ophthalmology, University Vita-Salute, IRCCS San Raffaele, Milan
| | - Riccardo Sacconi
- Department of Ophthalmology, University Vita-Salute, IRCCS San Raffaele, Milan
- Eye Clinic, Department of Neurological and Movement Sciences, University of Verona, Verona
| | | | - Lea Querques
- Department of Ophthalmology, University Vita-Salute, IRCCS San Raffaele, Milan
- G. B. Bietti Foundation-IRCCS, Rome, Italy
| | - Francesco Bandello
- Department of Ophthalmology, University Vita-Salute, IRCCS San Raffaele, Milan
| | - Giuseppe Querques
- Department of Ophthalmology, University Vita-Salute, IRCCS San Raffaele, Milan
| |
Collapse
|
6
|
Nesper PL, Soetikno BT, Fawzi AA. Choriocapillaris Nonperfusion is Associated With Poor Visual Acuity in Eyes With Reticular Pseudodrusen. Am J Ophthalmol 2017; 174:42-55. [PMID: 27794427 PMCID: PMC5253325 DOI: 10.1016/j.ajo.2016.10.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE To study choriocapillaris blood flow in age-related macular degeneration (AMD) using optical coherence tomography angiography (OCTA) and study its correlation to visual acuity (VA) in eyes with reticular pseudodrusen (RPD) vs those with drusen without RPD (drusen). DESIGN Cross-sectional study. METHODS Patients with either drusen or RPD in early AMD underwent OCTA imaging of the superior, inferior, and/or nasal macula. We quantified "percent choriocapillaris area of nonperfusion" (PCAN) in eyes with RPD vs those with drusen. We assessed the repeatability of PCAN and its correlations with VA. RESULTS Twenty-nine eyes of 26 patients with RPD and 21 eyes of 16 age-matched AMD patients with drusen were included. Qualitatively, the choriocapillaris in areas with RPD showed focal dark regions without flow signal on OCTA (nonperfusion). The repeatability coefficient of PCAN was 0.49%. Eyes with RPD had significantly greater PCAN compared with eyes with drusen (7.31% and 3.88%, respectively; P < .001). We found a significant correlation between PCAN and VA for the entire dataset (r = 0.394, P = .005). When considering eyes with RPD separately, this correlation was stronger (r = 0.474, P = .009) but lost significance when considering eyes with drusen separately (r = 0.175, P = .45). CONCLUSIONS Eyes with RPD have significantly larger areas of choriocapillaris nonperfusion compared with eyes with drusen and no RPD. The correlation between PCAN and VA in this RPD population provides a potential mechanistic explanation for vision compromise in RPD compared with other forms of drusen in AMD.
Collapse
Affiliation(s)
- Peter L Nesper
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Brian T Soetikno
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Functional Optical Imaging Laboratory, Department of Biomedical Engineering, Northwestern University, Chciago, Illinois
| | - Amani A Fawzi
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
7
|
Sampson DM, Alonso-Caneiro D, Chew AL, Lamey T, McLaren T, De Roach J, Chen FK. Enhanced Visualization of Subtle Outer Retinal Pathology by En Face Optical Coherence Tomography and Correlation with Multi-Modal Imaging. PLoS One 2016; 11:e0168275. [PMID: 27959968 PMCID: PMC5154571 DOI: 10.1371/journal.pone.0168275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/29/2016] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To present en face optical coherence tomography (OCT) images generated by graph-search theory algorithm-based custom software and examine correlation with other imaging modalities. METHODS En face OCT images derived from high density OCT volumetric scans of 3 healthy subjects and 4 patients using a custom algorithm (graph-search theory) and commercial software (Heidelberg Eye Explorer software (Heidelberg Engineering)) were compared and correlated with near infrared reflectance, fundus autofluorescence, adaptive optics flood-illumination ophthalmoscopy (AO-FIO) and microperimetry. RESULTS Commercial software was unable to generate accurate en face OCT images in eyes with retinal pigment epithelium (RPE) pathology due to segmentation error at the level of Bruch's membrane (BM). Accurate segmentation of the basal RPE and BM was achieved using custom software. The en face OCT images from eyes with isolated interdigitation or ellipsoid zone pathology were of similar quality between custom software and Heidelberg Eye Explorer software in the absence of any other significant outer retinal pathology. En face OCT images demonstrated angioid streaks, lesions of acute macular neuroretinopathy, hydroxychloroquine toxicity and Bietti crystalline deposits that correlated with other imaging modalities. CONCLUSIONS Graph-search theory algorithm helps to overcome the limitations of outer retinal segmentation inaccuracies in commercial software. En face OCT images can provide detailed topography of the reflectivity within a specific layer of the retina which correlates with other forms of fundus imaging. Our results highlight the need for standardization of image reflectivity to facilitate quantification of en face OCT images and longitudinal analysis.
Collapse
Affiliation(s)
- Danuta M. Sampson
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Avenell L. Chew
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Tina Lamey
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, Western Australia, Australia
| | - Terri McLaren
- Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, Western Australia, Australia
| | - John De Roach
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, Western Australia, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia
- Lions Eye Institute, Nedlands, Western Australia, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
- * E-mail:
| |
Collapse
|
8
|
Perspectives on reticular pseudodrusen in age-related macular degeneration. Surv Ophthalmol 2016; 61:521-37. [DOI: 10.1016/j.survophthal.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 11/20/2022]
|
9
|
Khan KN, Mahroo OA, Khan RS, Mohamed MD, McKibbin M, Bird A, Michaelides M, Tufail A, Moore AT. Differentiating drusen: Drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes. Prog Retin Eye Res 2016; 53:70-106. [DOI: 10.1016/j.preteyeres.2016.04.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/24/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
|