1
|
Markowitz DM, Affel E, Hajnóczky G, Sergott RC. Future applications of fluorescence lifetime imaging ophthalmoscopy in neuro-ophthalmology, neurology, and neurodegenerative conditions. Front Neurol 2025; 16:1493876. [PMID: 40125394 PMCID: PMC11927091 DOI: 10.3389/fneur.2025.1493876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/07/2025] [Indexed: 03/25/2025] Open
Abstract
Fluorescence lifetime imaging ophthalmoscopy (FLIO) has emerged as an innovative advancement in retinal imaging, with the potential to provide in vivo non-invasive insights into the mitochondrial metabolism of the retina. Traditional retinal imaging, such as optical coherence tomography (OCT) and fundus autofluorescence (FAF) intensity imaging, focus solely on structural changes to the retina. In contrast, FLIO provides data that may reflect retinal fluorophore activity, some of which may indicate mitochondrial metabolism. This review builds upon the existing literature to describe the principles of FLIO and established uses in retinal diseases while introducing the potential for FLIO in neurodegenerative conditions.
Collapse
Affiliation(s)
- Daniel M. Markowitz
- Drexel University College of Medicine, Philadelphia, PA, United States
- William H. Annesley, EyeBrain Center, Vicky and Jack Farber Neuroscience Institute, Thomas Jefferson University, Partnered with Wills Eye Hospital, Philadelphia, PA, United States
| | - Elizabeth Affel
- William H. Annesley, EyeBrain Center, Vicky and Jack Farber Neuroscience Institute, Thomas Jefferson University, Partnered with Wills Eye Hospital, Philadelphia, PA, United States
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Robert C. Sergott
- William H. Annesley, EyeBrain Center, Vicky and Jack Farber Neuroscience Institute, Thomas Jefferson University, Partnered with Wills Eye Hospital, Philadelphia, PA, United States
| |
Collapse
|
2
|
Sallo FB, Dysli C, Holzer FJ, Ranza E, Guipponi M, Antonarakis SE, Munier FL, Bird AC, Schorderet DF, Rossillion B, Vaclavik V. Characterization of the Retinal Phenotype Using Multimodal Imaging in Novel Compound Heterozygote Variants of CYP2U1. OPHTHALMOLOGY SCIENCE 2025; 5:100618. [PMID: 39605873 PMCID: PMC11599445 DOI: 10.1016/j.xops.2024.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 11/29/2024]
Abstract
Purpose To report the retinal phenotype in 2 patients simulating type 2 macular telangiectasis with new variants in CYP2U1 implicated in hereditary spastic paraplegia type 56 (HSP 56). Design Cross sectional case series study. Participants Five members of a non-consanguineous family (parents and 3 male children) were investigated. Methods All family members underwent a full ophthalmic evaluation and multimodal retinal imaging. Two family members demonstrating retinal anomalies underwent additional OCT angiography, dual wavelength autofluorescence and fluorescence lifetime imaging ophthalmoscopy, kinetic perimetry, fundus-correlated microperimetry, electroretinography, and electro-oculography. Whole-exome sequencing was performed in all 5 family members. Main Outcome Measures To characterize the retinal phenotype in affected patients with variants in CYP2U1, using multimodal imaging: dual-wavelength autofluorescence, fluorescence lifetime, OCT angiography. Results The 2 siblings with compound heterozygous novel variants c.452C>T; p.(Pro151Leu), c.943C>T; p.(Gln315Ter) in CYP2U1 demonstrated parafoveal loss of retinal transparency and hyperreflectivity to blue light, redistribution of macular pigment to the parafoveal edge, photoreceptor loss, and fluorescence lifetime imaging ophthalmoscopy anomalies: a pattern compatible with that seen in macular telangiectasia type 2 (MacTel). One had manifest neurological abnormalities since early childhood; the second had no neurological abnormalities. Each parent and the third sibling were heterozygous for 1 variant and were neurologically and ophthalmically normal. Conclusions These CYP2U1 variants are associated with a retinal phenotype very similar to that otherwise specific for MacTel, suggestive of possible links in the etiology and pathogenesis of these diseases. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Ferenc B. Sallo
- Oculogenetic Unit, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Chantal Dysli
- Department of Ophthalmology, Inselspital, University of Bern, Bern, Switzerland
| | - Franz Josef Holzer
- Department of Neurology, University Hospitals of Geneva, Geneva, Switzerland
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | | | - Francis L. Munier
- Oculogenetic Unit, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alan C. Bird
- Department Medical Retina, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Daniel F. Schorderet
- Institute for Research in Ophthalmology, Sion, Switzerland
- Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
- Faculty of Life Sciences, Ecole Polytechnique Federal de Lausanne, Lausanne, Switzerland
| | | | - Veronika Vaclavik
- Oculogenetic Unit, Jules Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
- Ophthalmology Department, Hôpital Cantonal de Fribourg, HFR, Fribourg, Switzerland
| |
Collapse
|
3
|
Zhang X, Wu G, Qiu C, Yang W, Yao T, Zhang Z, He Y. Research Progress of Central Serous Chorioretinopathy in Recent 20 Years Based on Visual Bibliometric Analysis. Semin Ophthalmol 2024; 39:639-650. [PMID: 38949222 DOI: 10.1080/08820538.2024.2373268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE To dynamically track the publications on central serous chorioretinopathy (CSC) and depict the research status and hot spots to guide future research. METHODS Gather all papers published in this area between 2004 and 2024 in the WOSCC databases comprehensively, assess their trends, and characterize the contributions of various nations, authors, institutions, and journals. In addition, VOSviewer, CiteSpace, and R software are used to obtain the most popular keywords for the topic. RESULTS A total of 2,203 papers were published across 1,863 institutions in 59 countries. Among these, 6,907 authors contributed to publications in 300 journals and generated a total of 35,638 citations. The number of publications continues to grow steadily. Notably, Jay Chhablani's team/Lab stands out as the leading contributor with ownership of 84 publications. Through keyword network analysis and clustering techniques, risk factor-related clustering, imaging-related clustering, pathogenesis-related clustering, and treatment-related clustering were identified. Furthermore, keyword analysis has unveiled emerging frontier areas including pachychoroid disease, choroidal vasculature abnormalities, PDT therapy, and optical coherence tomography that have garnered increasing interest. CONCLUSION This study presents a comprehensive review of central serous retinopathy research conducted in the past two decades, highlighting key trends and exploring emerging research frontiers within this field. As such, it provides valuable references and suggestions for researchers engaged in studying this topic.
Collapse
Affiliation(s)
- Xueqin Zhang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Guihong Wu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Chen Qiu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Wei Yang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Tianyu Yao
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Zhiru Zhang
- Department of Ophthalmology, Deyang People's Hospital, Deyang, China
| | - Yue He
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
- Stem Cell Immunity and Regeneration Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Nguyen TD, Chen YI, Nguyen AT, Yonas S, Sripati MP, Kuo YA, Hong S, Litvinov M, He Y, Yeh HC, Grady Rylander H. Two-photon autofluorescence lifetime assay of rabbit photoreceptors and retinal pigment epithelium during light-dark visual cycles in rabbit retina. BIOMEDICAL OPTICS EXPRESS 2024; 15:3094-3111. [PMID: 38855698 PMCID: PMC11161359 DOI: 10.1364/boe.511806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 06/11/2024]
Abstract
Two-photon excited fluorescence (TPEF) is a powerful technique that enables the examination of intrinsic retinal fluorophores involved in cellular metabolism and the visual cycle. Although previous intensity-based TPEF studies in non-human primates have successfully imaged several classes of retinal cells and elucidated aspects of both rod and cone photoreceptor function, fluorescence lifetime imaging (FLIM) of the retinal cells under light-dark visual cycle has yet to be fully exploited. Here we demonstrate a FLIM assay of photoreceptors and retinal pigment epithelium (RPE) that reveals key insights into retinal physiology and adaptation. We found that photoreceptor fluorescence lifetimes increase and decrease in sync with light and dark exposure, respectively. This is likely due to changes in all-trans-retinol and all-trans-retinal levels in the outer segments, mediated by phototransduction and visual cycle activity. During light exposure, RPE fluorescence lifetime was observed to increase steadily over time, as a result of all-trans-retinol accumulation during the visual cycle and decreasing metabolism caused by the lack of normal perfusion of the sample. Our system can measure the fluorescence lifetime of intrinsic retinal fluorophores on a cellular scale, revealing differences in lifetime between retinal cell classes under different conditions of light and dark exposure.
Collapse
Affiliation(s)
- Trung Duc Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Yuan-I Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Anh-Thu Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Siem Yonas
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Manasa P Sripati
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Yu-An Kuo
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Soonwoo Hong
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Mitchell Litvinov
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Yujie He
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Texas Materials Institute, University of Texas at Austin, Austin, TX, USA
| | - H Grady Rylander
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
5
|
Schweitzer D, Haueisen J, Klemm M. Suppression of natural lens fluorescence in fundus autofluorescence measurements: review of hardware solutions. BIOMEDICAL OPTICS EXPRESS 2022; 13:5151-5170. [PMID: 36425615 PMCID: PMC9664869 DOI: 10.1364/boe.462559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
Fluorescence lifetime imaging ophthalmoscopy (FLIO), a technique for investigating metabolic changes in the eye ground, can reveal the first signs of diseases related to metabolism. The fluorescence of the natural lens overlies the fundus fluorescence. Although the influence of natural lens fluorescence can be somewhat decreased with mathematical models, excluding this influence during the measurement by using hardware enables more exact estimation of the fundus fluorescence. Here, we analyze four 1-photon excitation hardware solutions to suppress the influence of natural lens fluorescence: aperture stop separation, confocal scanning laser ophthalmoscopy, combined confocal scanning laser ophthalmoscopy and aperture stop separation, and dual point confocal scanning laser ophthalmoscopy. The effect of each principle is demonstrated in examples. The best suppression is provided by the dual point principle, realized with a confocal scanning laser ophthalmoscope. In this case, in addition to the fluorescence of the whole eye, the fluorescence of the anterior part of the eye is detected from a non-excited spot of the fundus. The intensity and time-resolved fluorescence spectral data of the fundus are derived through the subtraction of the simultaneously measured fluorescence of the excited and non-excited spots. Advantages of future 2-photon fluorescence excitation are also discussed. This study provides the first quantitative evaluation of hardware principles to suppress the fluorescence of the natural lens during measurements of fundus autofluorescence.
Collapse
Affiliation(s)
- D. Schweitzer
- Department of Ophthalmology, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - J. Haueisen
- Institute of Biomedical Engineering and Informatics, POB 100565, 98694 Ilmenau, Germany
| | - M. Klemm
- Institute of Biomedical Engineering and Informatics, POB 100565, 98694 Ilmenau, Germany
| |
Collapse
|
6
|
Hammer M, Simon R, Meller D, Klemm M. Combining fluorescence lifetime with spectral information in fluorescence lifetime imaging ophthalmoscopy (FLIO). BIOMEDICAL OPTICS EXPRESS 2022; 13:5483-5494. [PMID: 36425633 PMCID: PMC9664887 DOI: 10.1364/boe.457946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 06/01/2023]
Abstract
Fluorescence lifetime imaging ophthalmoscopy (FLIO) provides information on fluorescence lifetimes in two spectral channels as well as the peak emission wavelength (PEW) of the fluorescence. Here, we combine these measures in an integral three-dimensional lifetime-PEW metric vector and determine a normal range for this vector from measurements in young healthy subjects. While for these control subjects 97 (±8) % (median (interquartile range)) of all para-macular pixels were covered by this normal vector range, it was 67 (±55) % for the elderly healthy, 38 (±43) % for age-related macular degeneration (AMD)-suspect subjects, and only 6 (±4) % for AMD patients. The vectors were significantly different for retinal pigment epithelium (RPE) lesions in AMD patients from that of non-affected tissue (p < 0.001). Lifetime- PEW plots allowed to identify possibly pathologic fundus areas by fluorescence parameters outside a 95% quantile per subject. In a patient follow-up, changes in fluorescence parameters could be traced in the lifetime-PEW metric, showing their change over disease progression.
Collapse
Affiliation(s)
- Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
- Center for Medical Optics and Photonics, Univ. of Jena, Jena, Germany
| | - Rowena Simon
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Daniel Meller
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Matthias Klemm
- Institute of Biomedical Engineering and Informatics, Technical Univ. Ilmenau, Ilmenau, Germany
| |
Collapse
|
7
|
Alexopoulos P, Madu C, Wollstein G, Schuman JS. The Development and Clinical Application of Innovative Optical Ophthalmic Imaging Techniques. Front Med (Lausanne) 2022; 9:891369. [PMID: 35847772 PMCID: PMC9279625 DOI: 10.3389/fmed.2022.891369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
The field of ophthalmic imaging has grown substantially over the last years. Massive improvements in image processing and computer hardware have allowed the emergence of multiple imaging techniques of the eye that can transform patient care. The purpose of this review is to describe the most recent advances in eye imaging and explain how new technologies and imaging methods can be utilized in a clinical setting. The introduction of optical coherence tomography (OCT) was a revolution in eye imaging and has since become the standard of care for a plethora of conditions. Its most recent iterations, OCT angiography, and visible light OCT, as well as imaging modalities, such as fluorescent lifetime imaging ophthalmoscopy, would allow a more thorough evaluation of patients and provide additional information on disease processes. Toward that goal, the application of adaptive optics (AO) and full-field scanning to a variety of eye imaging techniques has further allowed the histologic study of single cells in the retina and anterior segment. Toward the goal of remote eye care and more accessible eye imaging, methods such as handheld OCT devices and imaging through smartphones, have emerged. Finally, incorporating artificial intelligence (AI) in eye images has the potential to become a new milestone for eye imaging while also contributing in social aspects of eye care.
Collapse
Affiliation(s)
- Palaiologos Alexopoulos
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Chisom Madu
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
| | - Joel S. Schuman
- Department of Ophthalmology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Center for Neural Science, College of Arts & Science, New York University, New York, NY, United States
- Department of Electrical and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
8
|
Schultz R, Hasan S, Curcio CA, Smith RT, Meller D, Hammer M. Spectral and lifetime resolution of fundus autofluorescence in advanced age-related macular degeneration revealing different signal sources. Acta Ophthalmol 2022; 100:e841-e846. [PMID: 34258885 PMCID: PMC8764557 DOI: 10.1111/aos.14963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/14/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE To determine the fundus autofluorescence (FAF) lifetimes and spectral characteristics of individual drusen and hyperpigmentation independent of those with retinal pigment epithelium (RPE) in geographic atrophy (GA) areas in late-stage age-related macular degeneration (AMD). METHODS Three consecutive patients with complete RPE and outer retinal atrophy (cRORA) exhibiting drusen that were calcified or associated with hyperpigmentation were investigated with multimodal non-invasive ophthalmic imaging including colour fundus photography (CFP), optical coherence tomography (OCT), near-infrared reflectance (NIR), blue FAF and fluorescence lifetime imaging ophthalmoscopy (FLIO). Fluorescence lifetimes were measured in two spectral channels (short-wavelength spectral channel (SSC): 500-560 nm and long-wavelength spectral channel (LSC): 560-720 nm). RESULTS Drusen lacking RPE coverage, as confirmed by CFP and OCT, had longer FAF lifetimes than surrounding cRORA by 127 ± 66 ps (SSC) and 113 ± 48 ps (LSC, both p = 0.008 in Wilcoxon test, N = 9) and by 209 ± 100 ps (SSC) and 121 ± 56 ps (LSC, p < 0.001, N = 14) in two patients. Hyperpigmentation in CFP in a third patient shows strong FAF with prolonged lifetimes. In the SSC, persistent FAF was found inside cRORA. A crescent-shaped hyperfluorescence in an area of continuous RPE but lacking outer retina was seen in one eye with a history of anti-VEGF treatment. CONCLUSIONS Short-wavelength fluorescence in cRORA points to fluorophores beyond RPE organelles. Fluorescence properties of drusen within cRORA differ from in vivo drusen covered by RPE. These limited findings from three patients give new insight into the sources of FAF that can be further elucidated in larger cohorts.
Collapse
Affiliation(s)
- Rowena Schultz
- Department of Ophthalmology University Hospital Jena Jena Germany
| | - Somar Hasan
- Department of Ophthalmology University Hospital Jena Jena Germany
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences School of Medicine University of Alabama at Birmingham Birmingham AL USA
| | - Roland T. Smith
- The Mount Sinai Hospital New York Eye and Ear Infirmary of Mount Sinai New York NY USA
| | - Daniel Meller
- Department of Ophthalmology University Hospital Jena Jena Germany
| | - Martin Hammer
- Department of Ophthalmology University Hospital Jena Jena Germany
- Center for Medical Optics and Photonics University of Jena Jena Germany
| |
Collapse
|
9
|
Walters S, Feeks JA, Huynh KT, Hunter JJ. Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of photoreceptors and retinal pigment epithelium in the living non-human primate eye. BIOMEDICAL OPTICS EXPRESS 2022; 13:389-407. [PMID: 35154879 PMCID: PMC8803039 DOI: 10.1364/boe.444550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 05/18/2023]
Abstract
Fluorescence lifetime imaging has demonstrated promise as a quantitative measure of cell health. Adaptive optics two-photon excited fluorescence (TPEF) ophthalmoscopy enables excitation of intrinsic retinal fluorophores involved in cellular metabolism and the visual cycle, providing in vivo visualization of retinal structure and function at the cellular scale. Combining these technologies revealed that macaque cones had a significantly longer mean TPEF lifetime than rods at 730 nm excitation. At 900 nm excitation, macaque photoreceptors had a significantly longer mean TPEF lifetime than the retinal pigment epithelium layer. AOFLIO can measure the fluorescence lifetime of intrinsic retinal fluorophores on a cellular scale, revealing differences in lifetime between retinal cell classes.
Collapse
Affiliation(s)
- Sarah Walters
- The Institute of Optics, University of Rochester, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Currently with IDEX Health & Science, West Henrietta, NY 14586, USA
- These authors contributed equally
| | - James A. Feeks
- The Institute of Optics, University of Rochester, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Currently with IDEX Health & Science, West Henrietta, NY 14586, USA
- These authors contributed equally
| | - Khang T. Huynh
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Jennifer J. Hunter
- The Institute of Optics, University of Rochester, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
- Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
10
|
Schultz R, Schwanengel L, Klemm M, Meller D, Hammer M. Spectral fundus autofluorescence peak emission wavelength in ageing and AMD. Acta Ophthalmol 2021; 100:e1223-e1231. [PMID: 34850573 DOI: 10.1111/aos.15070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/26/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To investigate the spectral characteristics of fundus autofluorescence (FAF) in AMD patients and controls. METHODS Fundus autofluorescence spectral characteristics was described by the peak emission wavelength (PEW) of the spectra. Peak emission wavelength (PEW) was derived from the ratio of FAF recordings in two spectral channels at 500-560 nm and 560-720 nm by fluorescence lifetime imaging ophthalmoscopy. The ratio of FAF intensity in both channels was related to PEW by a calibration procedure. Peak emission wavelength (PEW) measurements were done in 44 young (mean age: 24.0 ± 3.8 years) and 18 elderly (mean age: 67.5 ± 10.2 years) healthy subjects as well as 63 patients with AMD (mean age: 74.0 ± 7.3 years) in each pixel of a 30° imaging field. The values were averaged over the central area, the inner and the outer ring of the ETDRS grid. RESULTS There was no significant difference between PEW in young and elderly controls. However, PEW was significantly shorter in AMD patients (ETDRS grid centre: 571 ± 26 nm versus 599 ± 17 nm for elderly controls, inner ring: 596 ± 17 nm versus 611 ± 11 nm, outer ring: 602 ± 16 nm versus 614 ± 11 nm). After a mean follow-up time of 50.8 ± 10.8 months, the PEW in the patients decreased significantly by 9 ± 19 nm in the inner ring of the grid. Patients, showing progression to atrophic AMD in the follow up, had significantly (p ≤ 0.018) shorter PEW at baseline than non-progressing patients. CONCLUSIONS Peak emission wavelength (PEW) is related to AMD pathology and might be a diagnostic marker in AMD. Possibly, a short PEW can predict progression to retinal and/or pigment epithelium atrophy.
Collapse
Affiliation(s)
- Rowena Schultz
- Department of Ophthalmology University Hospital Jena Jena Germany
| | | | - Matthias Klemm
- Institute of Biomedical Engineering and Informatics Technical Univ. Ilmenau Ilmenau Germany
| | - Daniel Meller
- Department of Ophthalmology University Hospital Jena Jena Germany
| | - Martin Hammer
- Department of Ophthalmology University Hospital Jena Jena Germany
- Center for Medical Optics and Photonics Univ. of Jena Jena Germany
| |
Collapse
|
11
|
FLUORESCENCE LIFETIME IMAGING OPHTHALMOSCOPY: Findings After Surgical Reattachment of Macula-Off Rhegmatogenous Retinal Detachment. Retina 2021; 40:1929-1937. [PMID: 31860523 PMCID: PMC7505146 DOI: 10.1097/iae.0000000000002718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study confirms that fluorescence lifetime imaging ophthalmoscopy is able to identify and quantify macular alterations after surgical reattachment of macula-off rhegmatogenous retinal detachment that relate to visual acuity. Fluorescence lifetime imaging ophthalmoscopy could be a useful noninvasive diagnostic tool to assess eyes after rhegmatogenous retinal detachment repair. Purpose: The purpose of this study was to investigate fluorescence lifetime imaging ophthalmoscopy lifetimes after macula-off rhegmatogenous retinal detachment (RRD) repair. Methods: Fifty-eight patients with successful macula-off RRD reattachment surgery were included. Retinal autofluorescence was excited with 470 nm, and amplitude-weighted mean fluorescence lifetimes (Tm) were measured in a short spectral channel (SSC, 498–560 nm) and a long spectral channel (LSC, 560–720 nm). Tm were obtained within a standardized Early Treatment Diabetic Retinopathy Study grid and correlated with Tm. The unaffected fellow eye served as control. Results: Fifty-eight patients (age: 65 ± 1.6 years, 11 women) were imaged at median 1.5 months postoperatively. Tm were significantly prolongxxxed within areas of previously detached retina in the long spectral channel and particularly in the central subfield in the short spectral channel. Short lifetimes in the center of the Early Treatment Diabetic Retinopathy Study grid correlated with better visual acuity (short spectral channel; r2 = 0.18, P = 0.001, long spectral channel; r2 = 0.08, P = 0.03). Areas of residual subretinal fluid pockets in four RRD eyes displayed short fluorescence lifetimes. Conclusion: Areas of previously detached retina exhibit significant fluorescence lifetime changes. We found a significant correlation of fluorescence lifetimes within the fovea with visual acuity after successful RRD repair. Our data suggests that the prolongation of fluorescence lifetimes in the fovea is mainly driven by loss of macular pigment. Therefore, fluorescence lifetime imaging ophthalmoscopy may be useful in the prediction of long-term functional outcomes after macula-off RRD surgery.
Collapse
|
12
|
Abstract
The fundus autofluorescence pattern of central serous chorioretinopathy is related to the disease chronicity, visual acuity, and optical coherence tomography findings. Classification of fundus autofluorescence patterns in central serous chorioretinopathy is helpful when predicting the disease status and considering the timing of treatment. Purpose: To investigate the patterns of fundus autofluorescence (FAF) abnormalities in patients with central serous chorioretinopathy (CSC). Methods: This cross-sectional observational study included 126 eyes of 118 patients who were diagnosed with central serous chorioretinopathy from December 2006 to April 2012 at Kyung Hee University Hospital, Seoul, Korea. Fundus autofluorescence patterns were analyzed with spectral domain optical coherence tomography and visual acuity. Results: Fundus autofluorescence patterns were grouped as blocked (38.9%), mottled (8.7%), hyper (31.0%), hyper/hypo (13.5%), or descending tract (8.0%). The duration of symptoms was 7.8 (±20.4), 28.3 (±31.8), 42.5 (±69.1), 163.8 (±183.5), and 174.5 (±162.3) days in the blocked, mottled, hyper, descending tract, and hyper/hypo groups, respectively (P < 0.001). The blocked FAF group had the best visual acuity (P = 0.011). The intact ellipsoid zone on the spectral domain optical coherence tomography was mostly found in the blocked FAF group (P < 0.001), and the disrupted ellipsoid zone was commonly exhibited in the hyper/hypo and descending tract groups. Disrupted external limiting membrane line on the spectral domain optical coherence tomography was seen in two patients of the descending tract group only. Conclusion: The FAF abnormalities in central serous chorioretinopathy show multiple patterns and are related with the chronicity and visual acuity. Fundus autofluorescence patterns in central serous chorioretinopathy are helpful when considering the timing of treatment and predicting the disease status.
Collapse
|
13
|
Şahinoğlu Keşkek N, Şermet F. The Use of Fundus Autofluorescence in Dry Age-Related Macular Degeneration. Turk J Ophthalmol 2021; 51:169-176. [PMID: 34187152 PMCID: PMC8251671 DOI: 10.4274/tjo.galenos.2020.49107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/26/2020] [Indexed: 12/01/2022] Open
Abstract
Fundus autofluorescence (FAF) has been a well-known imaging method for quite some time. However, with developing technologies and novel imaging devices, FAF is being used more often to diagnose and monitor retinal diseases. The density of lipofuscin (LF) and other fluorophores in the retina have a determining role in FAF images. In dry age-related macular degeneration (AMD), hyperautofluorescence is seen in cases of increasing LF in the retina pigment epithelium, whereas hypoautofluorescence is detected in decreasing LF resulting from geographic atrophy. In recent years, studies have shown that FAF images provide prognostic information in patients with AMD. This review aims to highlight the importance of FAF imaging in dry AMD.
Collapse
Affiliation(s)
- Nedime Şahinoğlu Keşkek
- Başkent University Faculty of Medicine, Adana Training and Research Center, Department of Ophthalmology, Adana, Turkey
| | - Figen Şermet
- Ankara University Faculty of Medicine, Department of Ophthalmology, Ankara, Turkey
| |
Collapse
|
14
|
Sonntag SR, Seifert E, Hamann M, Lewke B, Theisen-Kunde D, Grisanti S, Brinkmann R, Miura Y. Fluorescence Lifetime Changes Induced by Laser Irradiation: A Preclinical Study towards the Evaluation of Retinal Metabolic States. Life (Basel) 2021; 11:life11060555. [PMID: 34199212 PMCID: PMC8231852 DOI: 10.3390/life11060555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/06/2021] [Indexed: 12/17/2022] Open
Abstract
Fluorescence Lifetime (FLT) of intrinsic fluorophores may alter under the change in metabolic state. In this study, the FLT of rabbit retina was investigated in vivo after laser irradiation using fluorescence lifetime imaging ophthalmoscopy (FLIO). The retina of the Chinchilla bastard rabbits was irradiated with a 514 nm diode laser. FLIO, fundus photography, and optical coherence tomography (OCT) were conducted 30 min and 1 to 3 weeks after treatment. After strong coagulation, the FLT at laser spots was significantly elongated immediately after irradiation, conversely shortened after more than a week. Histological examination showed eosinophilic substance and melanin clumping in subretinal space at the coagulation spots older than one week. The FLT was also elongated right around the coagulation spots, which corresponded to the discontinuous ellipsoid zone (EZ) on OCT. This EZ change was recovered after one week, and the FLT became the same level as the surroundings. In addition, there was a region around the laser spot where the FLT was temporarily shorter than the surrounding area. When weak pulse energy was applied to selectively destroy only the RPE, a shortening of the FLT was observed immediately around the laser spot within one week after irradiation. FLIO could serve as a tool to evaluate the structural and metabolic response of the retina to laser treatments.
Collapse
Affiliation(s)
- Svenja Rebecca Sonntag
- Department of Ophthalmology, University of Lübeck, 23538 Lübeck, Germany; (S.R.S.); (S.G.)
| | - Eric Seifert
- Medical Laser Center Lübeck, 23562 Lübeck, Germany; (E.S.); (D.T.-K.); (R.B.)
| | - Maximilian Hamann
- Institute of Biomedical Optics, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (B.L.)
| | - Britta Lewke
- Institute of Biomedical Optics, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (B.L.)
| | - Dirk Theisen-Kunde
- Medical Laser Center Lübeck, 23562 Lübeck, Germany; (E.S.); (D.T.-K.); (R.B.)
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Lübeck, 23538 Lübeck, Germany; (S.R.S.); (S.G.)
| | - Ralf Brinkmann
- Medical Laser Center Lübeck, 23562 Lübeck, Germany; (E.S.); (D.T.-K.); (R.B.)
- Institute of Biomedical Optics, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (B.L.)
| | - Yoko Miura
- Department of Ophthalmology, University of Lübeck, 23538 Lübeck, Germany; (S.R.S.); (S.G.)
- Medical Laser Center Lübeck, 23562 Lübeck, Germany; (E.S.); (D.T.-K.); (R.B.)
- Institute of Biomedical Optics, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (B.L.)
- Correspondence:
| |
Collapse
|
15
|
Fundus Autofluorescence and Optical Coherence Tomography Characteristics in Different Stages of Central Serous Chorioretinopathy. J Ophthalmol 2021; 2021:6649064. [PMID: 34194820 PMCID: PMC8184321 DOI: 10.1155/2021/6649064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
Objective To describe the morphological changes on fundus autofluorescence (FAF) and spectral-domain optical coherence tomography (SD-OCT) imaging at different chronicity of central serous chorioretinopathy (CSC). Methods This cross-sectional study included patients with CSC of different chronicity. Changes in FAF scans and morphological changes on SD-OCT were evaluated and compared at different stages of CSC. Results Sixty-nine patients were enrolled in the study, with a mean age of 52.1 ± 11.8 years. A distinct hypoautofluorescence (AF) pattern was observed at the leakage point in acute CSC (100%). The leakage site was indistinguishable in 48% of the patients with late-chronic CSC. The majority of acute CSC patients showed hyper-AF in the area of serous retinal detachment (SRD), which persisted in the early-chronic stage of CSC. In late-chronic CSC, many cases of hypo-AF (22.2%) and mixed-pattern AF (14.8%) were observed. SD-OCT revealed evolving features of retinal pigment epithelium (RPE) abnormalities in a time-dependent manner: from peaked PEDs in acute CSC to low-lying PEDs in early-chronic CSC and, eventually, flat, irregular PEDs in late-chronic CSC. The average thickness of the photoreceptor layer (inner and outer segment; IS/OS) was 79 μm in the acute group and 55.2 μm in the chronic group. The photoreceptor layer (IS/OS) height was positively associated with visual acuity (p=0.002). Conclusion Different stages of CSC present different patterns on FAF and SD-OCT imaging. Chronicity of CSC can be estimated using specific features in these images. Photoreceptor layer (IS/OS) height acts as a good and objective predictor of visual outcomes in CSC patients.
Collapse
|
16
|
Sauer L, Vitale AS, Modersitzki NK, Bernstein PS. Fluorescence lifetime imaging ophthalmoscopy: autofluorescence imaging and beyond. Eye (Lond) 2021; 35:93-109. [PMID: 33268846 PMCID: PMC7852552 DOI: 10.1038/s41433-020-01287-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Fluorescence lifetime imaging ophthalmoscopy, FLIO, has gained large interest in the scientific community in the recent years. It is a noninvasive imaging modality that has been shown to provide additional information to conventional imaging modalities. The FLIO device is based on a Heidelberg Engineering Spectralis system. Autofluorescence lifetimes are excited at 473 nm and recorded in two spectral wavelength channels, a short spectral channel (SSC, 498-560 nm) and a long spectral channel (LSC, 560-720 nm). Typically, mean autofluorescence lifetimes in a 30° retinal field are investigated. FLIO shows a clear benefit for imaging different retinal diseases. For example, in age-related macular degeneration (AMD), ring patterns of prolonged FLIO lifetimes 1.5-3.0 mm from the fovea can be appreciated. Macular telangiectasia type 2 (MacTel) shows a different pattern, with prolonged FLIO lifetimes within the typical MacTel zone. In Stargardt disease, retinal flecks can be appreciated even before they are visible with other imaging modalities. Early hydroxychloroquine toxicity appears to be detectable with FLIO. This technique has more potential that has yet to be discovered. This review article focuses on current knowledge as well as pitfalls of this technology. It highlights clinical benefits of FLIO imaging in different ophthalmic and systemic diseases, and provides an outlook with perspectives from the authors.
Collapse
Affiliation(s)
- Lydia Sauer
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Alexandra S Vitale
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Natalie K Modersitzki
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
17
|
Schweitzer D, Haueisen J, Brauer JL, Hammer M, Klemm M. Comparison of algorithms to suppress artifacts from the natural lens in fluorescence lifetime imaging ophthalmoscopy (FLIO). BIOMEDICAL OPTICS EXPRESS 2020; 11:5586-5602. [PMID: 33149973 PMCID: PMC7587265 DOI: 10.1364/boe.400059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Fluorescence lifetime imaging ophthalmoscopy (FLIO) has developed as a new diagnostic tool in ophthalmology. FLIO measurements are taken from 30° retinal fields in two spectral channels (short spectral channel (SSC): 498-560 nm, long spectral channel (LSC): 560-720 nm). Because of the layered structure of the eye, the detected signal is an interaction of the fluorescence decay of the anterior part and of the fundus. By comparing FLIO measurements before and after cataract surgery, the impact of the natural lens was proven, despite the application of a confocal laser scanning (cSLO) technique. The goal of this work was to determine the best algorithmic solution to isolate the sole fundus fluorescence lifetime from the measured signal, suppressing artifacts from the natural lens. Three principles based on a tri-exponential model were investigated: a tailfit, a layer-based approach with a temporally shifted component, and the inclusion of a separately measured fluorescence decay of the natural lens. The mean fluorescence lifetime τm,12 is calculated using only the shortest and the intermediate exponential component. τm,all is calculated using all three exponential components. The results of tri-exponential tailfit after cataract surgery were considered as a reference, because the implanted artificial lens can be assumed as non-fluorescent. In SSC, the best accordance of τm,all of the reference was determined with τm,12 of the tailfit before surgery. If high-quality natural lens measurements are available, the correspondence of τm,12 is best with τm,all of the reference. In LSC, there is a good accordance for all models between τm,12 before and after surgery. To study the pure fundus fluorescence decay in eyes with natural lenses, we advise to utilize fluorescence lifetime τm,12 of a triple-exponential tailfit, as it corresponds well with the mean fluorescence lifetime τm,all of eyes with fluorescence-less artificial intraocular lenses.
Collapse
Affiliation(s)
- D. Schweitzer
- Department of Ophthalmology, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - J. Haueisen
- Institute of Biomedical Engineering and Informatics, POB 100565, 98694 Ilmenau, Germany
| | - J. L. Brauer
- Department of Ophthalmology, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - M. Hammer
- Department of Ophthalmology, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - M. Klemm
- Institute of Biomedical Engineering and Informatics, POB 100565, 98694 Ilmenau, Germany
| |
Collapse
|
18
|
Nkrumah G, Paez-Escamilla M, Singh SR, Rasheed MA, Maltsev D, Guduru A, Chhablani J. Biomarkers for central serous chorioretinopathy. Ther Adv Ophthalmol 2020; 12:2515841420950846. [PMID: 32923941 PMCID: PMC7448152 DOI: 10.1177/2515841420950846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/27/2020] [Indexed: 01/25/2023] Open
Abstract
Central serous chorioretinopathy (CSCR) is a common chorioretinal disease characterized by serous retinal detachment that most commonly involves the macular region. Although the natural history of the acute form shows a self-limiting course, a significant number of patients suffer from recurrent episodes leading to chronic disease, often leaving patients with residual visual impairment. Visual morbidity is often worsened by a delay in the diagnosis due to the incorrect understanding of the particular biomarkers of the disease. The aim of this review is to provide clinical understanding of the biomarkers of CSCR with an emphasis on the most recent findings in patient demographics, risk factors, clinical imaging findings, and management options. Patients with these biomarkers, age 30–44 years, male gender, increased stress levels, hypercortisolism (endogenous and exogenous exposures), sleep disturbance, pregnancy, and genetic predisposition have increased susceptibility to CSCR. Also, biomarkers on optical coherence tomography (OCT) such as choroidal thickness (CT) and choroidal vascularity index (CVI) showed good diagnostic and prognostic significance in the management of CSCR. There are nonspecific features of CSCR on OCT and OCT angiography such as choroidal neovascularization, photoreceptor alteration/cone density loss, and flat irregular pigment epithelium detachment. We described rare complications of CSCR such as cystoid macular edema (CME) and cystoid macular degeneration (CMD). Patients with CME recovered some vision when treated with anti-vascular endothelial growth factors (anti-VEGFs). Patients with CMD had irreversible macular damage even after treatment with anti-VEGFs.
Collapse
Affiliation(s)
- Gideon Nkrumah
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manuel Paez-Escamilla
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sumit Randhir Singh
- Jacobs Retina Center at Shiley Eye Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Dmitri Maltsev
- Department of Ophthalmology, Military Medical Academy, St. Petersburg, Russia
| | - Abhilash Guduru
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Jay Chhablani
- Faculty-Clinician, UPMC Eye Center, Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
19
|
Vitale AS, Sauer L, Modersitzki NK, Bernstein PS. Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) in Patients with Choroideremia. Transl Vis Sci Technol 2020; 9:33. [PMID: 33062396 PMCID: PMC7533737 DOI: 10.1167/tvst.9.10.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose To provide a detailed characterization of choroideremia (CHM) using fluorescence lifetime imaging ophthalmoscopy (FLIO) and to provide a deeper understanding of disease-related changes and progression. Methods Twenty-eight eyes of 14 patients with genetically confirmed CHM (mean age, 28 ± 14 years) and 14 age-matched healthy subjects were investigated in this study. FLIO images of a 30° retinal field were collected at the Moran Eye Center using a Heidelberg Engineering FLIO device. FLIO lifetimes were recorded in short spectral channels (SSC; 498-560 nm) and long spectral channels (LSC; 560-720 nm), and mean autofluorescence lifetimes (τm) were calculated. Optical coherence tomography (OCT) scans were recorded for each patient. Three patients were re-imaged after a year. Results Patients with CHM exhibit specific FLIO lifetime patterns. Prolonged FLIO lifetimes (around 600-700 ps) were found in the peripheral macula corresponding to atrophy in OCT imaging. In the central macula, τm was unrelated to autofluorescence intensity. Some areas of persistent retinal pigment epithelial islands had prolonged FLIO lifetimes, whereas other areas of hypofluorescence had short FLIO lifetimes. At 1-year follow-up, FLIO lifetimes were significantly prolonged within atrophic areas (P < 0.05). Conclusions FLIO shows distinct patterns in patients with CHM, indicating lesions of atrophy and areas of preserved function in the presence or absence of findings in fundus autofluorescence intensity images. FLIO may provide differentiated knowledge about pathophysiology and atrophy progression in CHM compared to conventional imaging modalities. Translational Relevance FLIO shows distinctive lifetime patterns that potentially identify areas of function, atrophy, and disease progression in patients with CHM.
Collapse
Affiliation(s)
- Alexandra S. Vitale
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Lydia Sauer
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Natalie K. Modersitzki
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Paul S. Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
20
|
Brauer JL, Schultz R, Klemm M, Hammer M. Influence of Lens Fluorescence on Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) Fundus Imaging and Strategies for Its Compensation. Transl Vis Sci Technol 2020; 9:13. [PMID: 32855860 PMCID: PMC7422756 DOI: 10.1167/tvst.9.8.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/15/2020] [Indexed: 12/04/2022] Open
Abstract
Purpose To explore the contribution of crystalline lens fluorescence to fluorescence lifetimes measured with fluorescence lifetime imaging ophthalmoscopy (FLIO) and to propose a computational model to reduce the lens influence. Methods FLIO, which detects autofluorescence decay over time in a short-wavelength spectral channel (SSC, 498–560 nm) and a long-wavelength spectral channel (LSC, 560–720 nm), was performed on 32 patients before and after cataract extraction. The mean autofluorescence lifetime (τm) of the fundus was determined from a three-exponential fit of the postoperative fluorescence decays. The preoperative measurements were fit with series of exponential functions in which one fluorescence component was time-shifted in order to represent lens fluorescence. Results Postoperatively, τm was 185 ± 22 ps in the SSC and 209 ± 34 ps in the LSC at the posterior pole. These values were best reproduced by fitting the postoperative measurements with a three-exponential model with a time-shifted third fluorescence component (SSC, 203 ± 45 ps; LSC, 215 ± 29 ps), whereas disregarding time-shifted lens fluorescence resulted in significantly (P < 0.001) longer τm values (SSC, 474 ± 206 ps; LSC, 215 ± 29 ps). The fluorescence of the cataract lens contributed to the total fluorescence by 54.2 ± 10.6% (SSC) and 29.5 ± 9.9% (LSC). Conclusions Cataract lens fluorescence greatly alters fluorescence lifetimes measured at the fundus by FLIO, resulting in an overestimation of the lifetimes; however, this may be compensated for considerably by taking lens influence into account in the fitting model. Translational Relevance This study investigates cataract fluorescence in FLIO and a mathematical model for compensation of this influence.
Collapse
Affiliation(s)
| | - Rowena Schultz
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Matthias Klemm
- Technical University Ilmenau, Institute for Biomedical Techniques and Informatics, Ilmenau, Germany
| | - Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany.,Center for Medical Optics and Photonics, University of Jena, Jena, Germany
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This article reviews emerging technologies in retinal imaging, including their scientific background, clinical implications and future directions. RECENT FINDINGS Fluorescence lifetime imaging ophthalmoscopy is a technology that will reveal biochemical and metabolic changes of the retina at the cellular level. Optical coherence tomography is evolving exponentially toward higher resolution, faster speed, increased portability and more cost effective. Adaptive optics scanning laser ophthalmoscopy fluorescein angiography will provide unprecedented detail of the retinal vasculature down to the level of capillaries, enabling earlier and more sensitive detection of retinal vascular diseases. SUMMARY Continued developments in retinal imaging focus on improved resolution, faster speed and noninvasiveness, while providing new information on the structure-function relationship of the retina inclusive of metabolic activity at the cellular level.
Collapse
|
22
|
Sauer L, Vitale AS, Andersen KM, Hart B, Bernstein PS. FLUORESCENCE LIFETIME IMAGING OPHTHALMOSCOPY (FLIO) PATTERNS IN CLINICALLY UNAFFECTED CHILDREN OF MACULAR TELANGIECTASIA TYPE 2 (MACTEL) PATIENTS. Retina 2020; 40:695-704. [PMID: 31517727 PMCID: PMC7062574 DOI: 10.1097/iae.0000000000002646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Macular telangiectasia Type 2 (MacTel) is an inherited retinal disease following an autosomal dominant pattern with late onset and reduced penetrance. Fluorescence lifetime imaging ophthalmoscopy (FLIO) enhances diagnosis by showing distinct changes in MacTel. This study investigates FLIO-associated changes in clinically unaffected family members. METHODS Eighty-one patients with MacTel (61 ± 12 years), 33 clinically healthy children under age 40 years of these MacTel patients (MacTel-C; 31 ± 6 years), 27 other family members (children over age 40 years, siblings, and parents) and 30 controls were investigated with the Heidelberg FLIO. All subjects underwent multimodal conventional imaging, including optical coherence tomography, blue-light reflectance, fluorescein angiography, and macular pigment imaging. RESULTS All 81 patients with MacTel showed typical FLIO patterns. Of the 33 investigated MacTel-C with completely normal eye examinations and conventional imaging, 12 (36%) show FLIO patterns consistent with early MacTel. CONCLUSION Prolonged FLIO lifetimes in the parafoveal area within the short spectral channel, especially temporally, are MacTel-specific. Fluorescence lifetime imaging ophthalmoscopy detects these lifetime patterns in over one-third of clinically unaffected MacTel-C. Although further studies will be necessary to determine the specificity of FLIO, it may help diagnose MacTel before conventional imaging modalities show changes or patients experience visual disturbances. Early detection may facilitate future gene discovery studies and interventional trials.
Collapse
Affiliation(s)
- Lydia Sauer
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Alexandra S. Vitale
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Karl M. Andersen
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
- Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| | - Barbara Hart
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Paul S. Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
23
|
Sauer L, Komanski CB, Vitale AS, Hansen ED, Bernstein PS. Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) in Eyes With Pigment Epithelial Detachments Due to Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2019; 60:3054-3063. [PMID: 31348823 PMCID: PMC6660189 DOI: 10.1167/iovs.19-26835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate fluorescence lifetime imaging ophthalmoscopy (FLIO) in neovascular AMD and pigment epithelial detachments (PEDs). Methods A total of 46 eyes with PEDs (>350 μm) as well as age-matched healthy controls were included in this study. We found 28 eyes showed neovascular AMD (nvAMD), and 17 had nonneovascular (dry) AMD (dAMD). The Heidelberg Engineering FLIO excited fluorescence at 473 nm. Fluorescence decays were detected in two spectral channels (498–560 nm; 560–720 nm) to determine fluorescence lifetimes of endogenous fluorophores in their specific spectral emission ranges. Mean fluorescence lifetimes (τm) were investigated. Multimodal imaging was reviewed by two ophthalmologists who circumscribed and classified PEDs as either serous (n = 4), hemorrhagic (n = 4), fibrovascular (n = 16), drusenoid (n = 17), or mixed (n = 5). Blood samples from a healthy subject and a patient with PED were investigated in a quartz cuvette. Results Eyes with nvAMD show similar FLIO patterns to dAMD: ring-shaped prolongations of τm 3 to 6 mm from the fovea. Different PED-forms show characteristic τm, while serous and hemorrhagic PEDs exhibit shortened τm, drusenoid PEDs show prolonged τm, and τm in fibrovascular PEDs is variable. Areas corresponding to sub-/intraretinal fluid display shortened τm. Ex vivo studies of blood also show short τm. Conclusions The previously described dAMD-related FLIO pattern is also present in nvAMD. Short τm in serous, fibrovascular, and hemorrhagic PEDs as well as sub/intraretinal fluid may disrupt this pattern. FLIO appears to differentiate between PEDs, hemorrhage, and fluid. Additionally, ex vivo studies of human blood help to better interpret FLIO images.
Collapse
Affiliation(s)
- Lydia Sauer
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Christopher B Komanski
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Alexandra S Vitale
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Eric D Hansen
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
24
|
Schultz R, Schuster F, Lehmann T, Schmidt J, Augsten R, Hammer M. Simplified approach to least-square fitting of fluorescence lifetime ophthalmoscopy (FLIO) data by fixating lifetimes. BIOMEDICAL OPTICS EXPRESS 2019; 10:5996-6008. [PMID: 31799060 PMCID: PMC6865094 DOI: 10.1364/boe.10.005996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new imaging modality in ophthalmology. For clinical investigations, the amplitude-weighted mean of two or three lifetime components is usually analyzed. In this study, we investigated the effects of fixation of lifetime components. This resulted in slightly higher fit errors but mean lifetimes were highly correlated to those from fits with variable individual lifetimes. Furthermore, this approach resulted in a similarly good discrimination of diabetic retinopathy patients from controls, a reduction of the computational workload, a de-noising of the mean lifetime images and allows higher local resolution. Thus, fixation of lifetimes in the fit of FLIO data could be superior for clinical routine analysis of FLIO data.
Collapse
Affiliation(s)
- Rowena Schultz
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Germany
| | - Franziska Schuster
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Germany
| | - Thomas Lehmann
- University Hospital Jena, Institute for Medical Statistics, Computer Science and Data Science, 07747 Jena, Germany
| | - Johanna Schmidt
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Germany
| | - Regine Augsten
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Germany
| | - Martin Hammer
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Germany
- University of Jena, Center for Medical Optics and Photonics, 07743 Jena, Germany
| |
Collapse
|
25
|
Sauer L, Calvo CM, Vitale AS, Henrie N, Milliken CM, Bernstein PS. Imaging of Hydroxychloroquine Toxicity with Fluorescence Lifetime Imaging Ophthalmoscopy. ACTA ACUST UNITED AC 2019; 3:814-825. [DOI: 10.1016/j.oret.2019.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022]
|
26
|
Della Volpe-Waizel M, Traber GL, Maloca P, Zinkernagel M, Schmidt-Erfurth U, Rubin G, Roska B, Otto T, Weleber RG, Scholl HPN. New Technologies for Outcome Measures in Retinal Disease: Review from the European Vision Institute Special Interest Focus Group. Ophthalmic Res 2019; 63:77-87. [PMID: 31352462 DOI: 10.1159/000501887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/03/2019] [Indexed: 01/03/2023]
Abstract
Novel diagnostic tools to measure retinal function and structure are rapidly being developed and introduced into clinical use. Opportunities exist to use these informative and robust measures as endpoints for clinical trials to determine efficacy and to monitor safety of therapeutic interventions. In order to inform researchers and clinician-scientists about these new diagnostic tools, a workshop was organized by the European Vision Institute. Invited speakers highlighted the recent advances in state-of-the-art technologies for outcome measures in the field of retina. This review highlights the workshop's presentations in the context of published literature.
Collapse
Affiliation(s)
- Maria Della Volpe-Waizel
- Department of Ophthalmology, University of Basel, Basel, Switzerland.,Institute of Molecular and Clinical Ophthalmology (IOB), Basel, Switzerland
| | - Ghislaine L Traber
- Department of Ophthalmology, University of Basel, Basel, Switzerland.,Institute of Molecular and Clinical Ophthalmology (IOB), Basel, Switzerland
| | - Peter Maloca
- Institute of Molecular and Clinical Ophthalmology (IOB), Basel, Switzerland
| | - Martin Zinkernagel
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Gary Rubin
- UCL University College London, Institute of Ophthalmology, London, United Kingdom
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology (IOB), Basel, Switzerland
| | - Tilman Otto
- Heidelberg Engineering GmbH, Heidelberg, Germany
| | - Richard G Weleber
- Casey Eye Institute, Departments of Ophthalmology and Molecular and Medical Genetics, University of Oregon Health and Science University, Portland, Oregon, USA
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, Basel, Switzerland, .,Institute of Molecular and Clinical Ophthalmology (IOB), Basel, Switzerland,
| |
Collapse
|
27
|
Dysli C, Schuerch K, Escher P, Wolf S, Zinkernagel MS. Fundus Autofluorescence Lifetime Patterns in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 59:1769-1778. [PMID: 29610860 DOI: 10.1167/iovs.17-23336] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigated whether fundus autofluorescence (FAF) lifetimes in patients with retinitis pigmentosa display a disease-specific lifetime pattern. Methods Fundus autofluorescence lifetime imaging ophthalmoscopy (FLIO) was performed in two spectral channels (498-560 and 560-720 nm) after excitation with a 473 nm pulsed laser in patients with retinitis pigmentosa and compared to healthy controls of a similar age range. Corresponding FAF intensity and spectral domain optical coherence tomography (OCT) data, as well as best corrected visual acuity (BCVA) were acquired and compared to fluorescence lifetime data. Results We investigated 43 eyes from 43 patients with retinitis pigmentosa (mean age 45 ± 15 years) and compared them to eyes of 13 age-matched healthy participants. Mean FAF lifetimes were prolonged in areas of photoreceptor atrophy with preserved retinal pigment epithelium (RPE) (P = 0.0036) and even longer in areas with total atrophy of photoreceptors and RPE (P = 0.0002). The prevalence of perifoveal ring structures characterized by prolonged fluorescence lifetimes in FLIO was higher (63% vs. 49%) and the rings were wider compared to the hyperautofluorescent rings in qualitative fundus autofluorescence intensity images. In the central fovea with intact retinal layer structure identified by OCT, fluorescence lifetimes were slightly prolonged compared to those of age-matched healthy controls (short spectral channel [SSC], P = 0.0044; long spectral channel [LSC], P = 0.0128). Short lifetimes within the macular center were negatively correlated with BCVA (R2 = 0.33, P < 0.0001) as well as the greatest diameter of the ellipsoid band in OCT. Conclusions FLIO in retinitis pigmentosa reveals characteristic patterns that allow identification of areas of photoreceptor atrophy, RPE atrophy, and remaining photoreceptor segments in areas of RPE atrophy. Fluorescence lifetimes can be used to identify ellipsoid zone loss that correlates with functional parameters.
Collapse
Affiliation(s)
- Chantal Dysli
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Kaspar Schuerch
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Pascal Escher
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Sebastian Wolf
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, and Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Sauer L, Andersen KM, Dysli C, Zinkernagel MS, Bernstein PS, Hammer M. Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-20. [PMID: 30182580 PMCID: PMC8357196 DOI: 10.1117/1.jbo.23.9.091415] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/24/2018] [Indexed: 05/04/2023]
Abstract
Autofluorescence-based imaging techniques have become very important in the ophthalmological field. Being noninvasive and very sensitive, they are broadly used in clinical routines. Conventional autofluorescence intensity imaging is largely influenced by the strong fluorescence of lipofuscin, a fluorophore that can be found at the level of the retinal pigment epithelium. However, different endogenous retinal fluorophores can be altered in various diseases. Fluorescence lifetime imaging ophthalmoscopy (FLIO) is an imaging modality to investigate the autofluorescence of the human fundus in vivo. It expands the level of information, as an addition to investigating the fluorescence intensity, and autofluorescence lifetimes are captured. The Heidelberg Engineering Spectralis-based fluorescence lifetime imaging ophthalmoscope is used to investigate a 30-deg retinal field centered at the fovea. It detects FAF decays in short [498 to 560 nm, short spectral channel (SSC) and long (560 to 720 nm, long spectral channel (LSC)] spectral channels, the mean fluorescence lifetimes (τm) are calculated using bi- or triexponential approaches. These are meant to be relatively independent of the fluorophore's intensity; therefore, fluorophores with less intense fluorescence can be detected. As an example, FLIO detects the fluorescence of macular pigment, retinal carotenoids that help protect the human fundus from light damages. Furthermore, FLIO is able to detect changes related to various retinal diseases, such as age-related macular degeneration, albinism, Alzheimer's disease, diabetic retinopathy, macular telangiectasia type 2, retinitis pigmentosa, and Stargardt disease. Some of these changes can already be found in healthy eyes and may indicate a risk to developing such diseases. Other changes in already affected eyes seem to indicate disease progression. This review article focuses on providing detailed information on the clinical findings of FLIO. This technique detects not only structural changes at very early stages but also metabolic and disease-related alterations. Therefore, it is a very promising tool that might soon be used for early diagnostics.
Collapse
Affiliation(s)
- Lydia Sauer
- University Hospital Jena, Jena, Thuringia, Germany
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
| | - Karl M. Andersen
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, United States
| | - Chantal Dysli
- Bern University Hospital, Inselspital, Department of Ophthalmology, Bern, Switzerland
| | - Martin S. Zinkernagel
- Bern University Hospital, Inselspital, Department of Ophthalmology, Bern, Switzerland
| | - Paul S. Bernstein
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
| | - Martin Hammer
- University Hospital Jena, Jena, Thuringia, Germany
- University of Jena, Center for Biomedical Optics and Photonics, Jena, Germany
- Address all correspondence to: Martin Hammer, E-mail:
| |
Collapse
|
29
|
Hammer M, Sauer L, Klemm M, Peters S, Schultz R, Haueisen J. Fundus autofluorescence beyond lipofuscin: lesson learned from ex vivo fluorescence lifetime imaging in porcine eyes. BIOMEDICAL OPTICS EXPRESS 2018; 9:3078-3091. [PMID: 29984084 PMCID: PMC6033583 DOI: 10.1364/boe.9.003078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 05/06/2023]
Abstract
Fundus autofluorescence (FAF) imaging is a well-established method in ophthalmology; however, the fluorophores involved need more clarification. The FAF lifetimes of 20 post mortem porcine eyes were measured in two spectral channels using fluorescence lifetime imaging ophthalmoscopy (FLIO) and compared with clinical data from 44 healthy young subjects. The FAF intensity ratio of the short and the long wavelength emission (spectral ratio) was determined. Ex vivo porcine fundus fluorescence emission is generally less intense than that seen in human eyes. The porcine retina showed significantly (p<0.05) longer lifetimes than the retinal pigment epithelium (RPE): 584 ± 128 ps vs. 121 ± 55 ps 498-560 nm, 240 ± 42 ps vs. 125 ± 20 ps at 560-720 nm. Furthermore, the lifetimes of the porcine RPE were significantly shorter (121 ± 55 ps and 125 ± 20 ps) than those measured from human fundus in vivo (162 ± 14 ps and 179 ± 13 ps, respectively). The fluorescence emission of porcine retina was shifted towards a shorter wavelength compared to that of RPE and human FAF. This data shows the considerable contribution of fluorophores in the neural retina to total FAF intensity in porcine eyes.
Collapse
Affiliation(s)
- Martin Hammer
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Am Klinikum 1, Germany
- University of Jena, Center for Biomedical Optics and Photonics, 07740 Jena, Germany
| | - Lydia Sauer
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Am Klinikum 1, Germany
- Technical University Ilmenau, Institute for Biomedical Engineering and Informatics, Gustav-Kirchhoff-Str. 2, 98693 Ilmenau, Germany
| | - Matthias Klemm
- Technical University Ilmenau, Institute for Biomedical Engineering and Informatics, Gustav-Kirchhoff-Str. 2, 98693 Ilmenau, Germany
| | - Sven Peters
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Am Klinikum 1, Germany
| | - Rowena Schultz
- University Hospital Jena, Department of Ophthalmology, 07747 Jena, Am Klinikum 1, Germany
| | - Jens Haueisen
- Technical University Ilmenau, Institute for Biomedical Engineering and Informatics, Gustav-Kirchhoff-Str. 2, 98693 Ilmenau, Germany
| |
Collapse
|
30
|
Andersen KM, Sauer L, Gensure RH, Hammer M, Bernstein PS. Characterization of Retinitis Pigmentosa Using Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO). Transl Vis Sci Technol 2018; 7:20. [PMID: 29946494 PMCID: PMC6016507 DOI: 10.1167/tvst.7.3.20] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
PURPOSE We investigated fundus autofluorescence (FAF) lifetimes in patients with retinitis pigmentosa (RP) using fluorescence lifetime imaging ophthalmoscopy (FLIO). METHODS A total of 33 patients (mean age, 40.0 ± 17.0 years) with RP and an age-matched healthy group were included. The Heidelberg FLIO was used to detect FAF decays in short (SSC; 498-560 nm) and long (LSC; 560-720 nm) spectral channels. We investigated a 30° retinal field and calculated the amplitude-weighted mean fluorescence lifetime (τm). Additionally, macular pigment measurements, macular optical coherence tomography (OCT) scans, fundus photographs, visual fields, and fluorescein angiograms were recorded. Genetic studies were performed on nearly all patients. RESULTS In RP, FLIO shows a typical pattern of prolonged τm in atrophic regions in the outer macula (SSC, 419 ± 195 ps; LSC, 401 ± 111 ps). Within the relatively preserved retina in the macular region, ring-shaped patterns were found, most distinctive in patients with autosomal dominant RP inheritance. Mean FAF lifetimes were shortened in rings in the LSC. Central areas remained relatively unaffected. CONCLUSIONS FLIO uniquely presents a distinct and specific signature in eyes affected with RP. The ring patterns show variations that indicate genetically determined pathologic processes. Shortening of FAF lifetimes in the LSC may indicate disease progression, as was previously demonstrated for Stargardt disease. Therefore, FLIO might be able to indicate disease progression in RP as well. TRANSLATIONAL RELEVANCE Hyperfluorescent FLIO rings with short FAF lifetimes may provide insight into the pathophysiologic disease status of RP-affected retinas potentially providing a more detailed assessment of disease progression.
Collapse
Affiliation(s)
- Karl M. Andersen
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
- Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| | - Lydia Sauer
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
- Department of Experimental Ophthalmology, University Hospital Jena, Jena, Germany
| | | | - Martin Hammer
- Department of Experimental Ophthalmology, University Hospital Jena, Jena, Germany
| | - Paul S. Bernstein
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
31
|
Sauer L, Gensure RH, Hammer M, Bernstein PS. Fluorescence Lifetime Imaging Ophthalmoscopy: A Novel Way to Assess Macular Telangiectasia Type 2. Ophthalmol Retina 2018; 2:587-598. [PMID: 30116796 PMCID: PMC6089530 DOI: 10.1016/j.oret.2017.10.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Macular Telangiectasia Type 2 (MacTel) is an uncommon, late-onset complex retinal disease that leads to central vision loss. No causative gene(s) have been identified so far, resulting in a challenging clinical diagnostic dilemma because retinal changes of early stages are often subtle. The objective of this study was to investigate the benefit of fluorescence lifetime imaging ophthalmoscopy (FLIO) for retinal imaging in patients with MacTel. DESIGN Cross-sectional study from a tertiary-care retinal referral practice. SUBJECTS AND CONTROLS 42 eyes of 21 patients (mean age 60.5±13.3 years) with MacTel as well as an age-matched healthy control group (42 eyes of 25 subjects, mean age 60.8±13.4 years). METHODS A 30° retinal field centered at the fovea was investigated using FLIO. This camera is based on a Heidelberg Engineering Spectralis system. Fundus autofluorescence (FAF) decays were detected in short (498-560 nm, SSC) and long (560-720 nm, LSC) spectral channels. The mean fluorescence lifetime, τm, was calculated from a 3-exponential approximation of the FAF decays. For MacTel patients, macular pigment (MP), OCT, blue light reflectance, fluorescein angiography, as well as fundus photography, were also recorded. MAIN OUTCOME MEASURES Mean FAF lifetime (τm) images. RESULTS FLIO of MacTel patients shows a unique pattern of prolonged τm at the temporal side of the fovea in patients with MacTel in the "MacTel area" within 5-6° of the foveal center. In early stages, this region appears crescent-shaped, while advanced stages show a ring-like pattern. This pattern corresponds well with other imaging modalities and gives an especially high contrast of the affected region even in minimally affected individuals. Additionally, FLIO provides a novel means to monitor the abnormal MP distribution. In one case, FLIO showed changes suggestive of MacTel within a clinically normal parent of two MacTel patients. CONCLUSIONS FLIO detects retinal changes in patients with MacTel with high contrast, presenting a distinctive signature that is a characteristic finding of the disease. The non-invasive properties of this novel imaging modality provide a valuable addition to clinical assessment of early changes in the disease that could lead to more accurate diagnosis of MacTel.
Collapse
Affiliation(s)
- Lydia Sauer
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
- University Hospital Jena, Bachstraße 18, 07743, Jena, Germany
| | | | - Martin Hammer
- University Hospital Jena, Bachstraße 18, 07743, Jena, Germany
| | - Paul S. Bernstein
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
32
|
Sauer L, Andersen KM, Li B, Gensure RH, Hammer M, Bernstein PS. Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) of Macular Pigment. Invest Ophthalmol Vis Sci 2018; 59:3094-3103. [PMID: 30025128 PMCID: PMC6009392 DOI: 10.1167/iovs.18-23886] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/04/2018] [Indexed: 02/04/2023] Open
Abstract
Purpose To describe different patterns of macular pigment (MP) seen in fluorescence lifetime imaging ophthalmoscopy (FLIO) and to analyze ex vivo fluorescence characteristics of carotenoids. Methods A total of 31 eyes of young healthy subjects, 4 eyes from patients with albinism, 36 eyes with macular telangiectasia type 2 (MacTel), 24 eyes with retinitis pigmentosa, and 1 eye with a macular hole were included in this clinic-based, cross-sectional study. All subjects underwent Heidelberg Engineering FLIO and MP measurements (dual-wavelength autofluorescence). Fundus autofluorescence (FAF) lifetimes of a 30° retinal field were detected in two spectral channels (SSC: 498-560 nm; LSC: 560-720 nm), and amplitude-weighted mean fluorescence lifetimes (τm) were calculated. Additionally, autofluorescence lifetimes of known dilutions of lutein and zeaxanthin were measured in a cuvette in free- and protein-associated states. Results MP shows a significant inverse correlation to foveal FAF lifetimes measured with FLIO (SSC: r = -0.608; P < 0.001). Different distribution patterns can be assigned to specific disease-related changes. Two patients with albinism, who did not have MP, were found to be missing short FAF lifetimes. In solvent, lutein and zeaxanthin show very short autofluorescence lifetimes (∼50-60 ps; SSC), as do their respective binding proteins (∼40-50 ps; SSC). When combining carotenoids with their specific binding proteins, the decay times shift to longer means (∼70-90 ps; SSC). Conclusions This study expands upon previous findings of an impact of MP on short FAF lifetimes by describing ex vivo autofluorescence lifetimes of carotenoids and different in vivo autofluorescence patterns that can be associated with certain diseases.
Collapse
Affiliation(s)
- Lydia Sauer
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
- Department of Experimental Ophthalmology, University Hospital Jena, Jena, Germany
| | - Karl M. Andersen
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, United States
| | - Binxing Li
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Rebekah H. Gensure
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Martin Hammer
- Department of Experimental Ophthalmology, University Hospital Jena, Jena, Germany
| | - Paul S. Bernstein
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
33
|
Sauer L, Klemm M, Peters S, Schweitzer D, Schmidt J, Kreilkamp L, Ramm L, Meller D, Hammer M. Monitoring foveal sparing in geographic atrophy with fluorescence lifetime imaging ophthalmoscopy - a novel approach. Acta Ophthalmol 2018; 96:257-266. [PMID: 29105362 DOI: 10.1111/aos.13587] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 08/09/2017] [Indexed: 01/12/2023]
Abstract
PURPOSE To investigate fundus autofluorescence (FAF) lifetimes in geographic atrophy (GA) with a focus on macular pigment (MP) and foveal sparing. METHODS The study included 35 eyes from 28 patients (mean age 79.2 ± 8.0 years) with GA. A 30° retinal field, centred at the macula, was investigated using fluorescence lifetime imaging ophthalmoscopy (FLIO). The FLIO technology is based on a Heidelberg Engineering Spectralis system. Decays of FAF were detected in a short (498-560 nm, SSC) and long (560-720 nm, LSC) spectral channel. The mean fluorescence lifetime, τm , was calculated from a three-exponential approximation of the FAF decays. Macular optical coherence tomography (OCT) scans as well as fundus photography were recorded. RESULTS Review of FLIO data reveals specific patterns of significantly prolonged τm in regions of GA (SSC 616 ± 343 ps, LSC 615 ± 154 ps) as compared to non-atrophic regions. Large τm differences between the fovea and atrophic areas correlate with better visual acuity (VA). Shorter τm at the fovea than within other non-atrophic regions indicates sparing, which was identified in 16 eyes. Seventy per cent of patients treated with lutein supplementation showed foveal sparing, whereas the rate among non-supplemented patients was 22%. CONCLUSION Using FLIO, we present a novel way to detect foveal sparing, investigate MP, and analyse variability of τm in different foveal regions (including the prognostic valuable border region) in GA. These findings support the potential utility of FLIO in monitoring disease progression. The findings also highlight the possibly protective effect of lutein supplementation, with implication in recording the presence and distributional pattern of MP.
Collapse
Affiliation(s)
| | - Matthias Klemm
- Institute of Biomedical Engineering and Informatics; Technical University Ilmenau; Ilmenau Germany
| | | | - Dietrich Schweitzer
- University Hospital Jena; Jena Germany
- Center for Medical Optics and Photonics; University of Jena; Jena Germany
| | | | | | - Lisa Ramm
- Department of Ophthalmology; University Hospital Carl-Gustav Carus; TU Dresden; Dresden Germany
| | | | - Martin Hammer
- University Hospital Jena; Jena Germany
- Center for Medical Optics and Photonics; University of Jena; Jena Germany
| |
Collapse
|
34
|
Sauer L, Gensure RH, Andersen KM, Kreilkamp L, Hageman GS, Hammer M, Bernstein PS. Patterns of Fundus Autofluorescence Lifetimes In Eyes of Individuals With Nonexudative Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2018; 59:AMD65-AMD77. [PMID: 30025104 PMCID: PMC6009207 DOI: 10.1167/iovs.17-23764] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/11/2018] [Indexed: 01/20/2023] Open
Abstract
Purpose To investigate fundus autofluorescence (FAF) lifetimes in patients with nonexudative AMD. Methods A total of 150 eyes of 110 patients (mean age: 73.2 ± 10.7 years) with nonexudative AMD, as well as a healthy group of 57 eyes in 38 subjects (mean age: 66.5 ± 8.7 years), were included. Investigations were conducted at the University Eye Clinic in Jena, Germany, as well as the Moran Eye Center in Salt Lake City, Utah, USA, using the Heidelberg Engineering Spectralis-based fluorescence lifetime imaging ophthalmoscope (FLIO). A 30° retinal field centered at the fovea was investigated. FAF decays were detected in short (498-560 nm) and long (560-720 nm, LSC) spectral channels. The mean fluorescence lifetimes (τm) were calculated. Optical coherence tomography scans and fundus photographs were also recorded. Results In patients with nonexudative AMD, FLIO shows a ring-shaped pattern of prolonged τm in the LSC. This pattern occurs in all patients with AMD (including very early stages) and in one-third of the healthy controls. FAF lifetimes were longer with more advanced stages. The presence of drusen is associated with prolonged τm when compared with the healthy fundus, but drusen identification is difficult with FLIO only. Conclusions FLIO detects a clear pattern of changes within the fundus, which appears to be AMD-associated. These changes are already visible in early AMD stages and not masked by the presence of other coexisting retinal diseases. These findings may be useful for the early diagnosis of AMD and to distinguish AMD from other retinal diseases.
Collapse
Affiliation(s)
- Lydia Sauer
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
- Department of Experimental Ophthalmology, University Hospital Jena, Jena, Germany
| | - Rebekah H. Gensure
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Karl M. Andersen
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, United States
| | - Lukas Kreilkamp
- Department of Experimental Ophthalmology, University Hospital Jena, Jena, Germany
| | - Gregory S. Hageman
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Martin Hammer
- Department of Experimental Ophthalmology, University Hospital Jena, Jena, Germany
| | - Paul S. Bernstein
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
35
|
Dysli C, Wolf S, Berezin MY, Sauer L, Hammer M, Zinkernagel MS. Fluorescence lifetime imaging ophthalmoscopy. Prog Retin Eye Res 2017; 60:120-143. [PMID: 28673870 PMCID: PMC7396320 DOI: 10.1016/j.preteyeres.2017.06.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 12/17/2022]
Abstract
Imaging techniques based on retinal autofluorescence have found broad applications in ophthalmology because they are extremely sensitive and noninvasive. Conventional fundus autofluorescence imaging measures fluorescence intensity of endogenous retinal fluorophores. It mainly derives its signal from lipofuscin at the level of the retinal pigment epithelium. Fundus autofluorescence, however, can not only be characterized by the spatial distribution of the fluorescence intensity or emission spectrum, but also by a characteristic fluorescence lifetime function. The fluorescence lifetime is the average amount of time a fluorophore remains in the excited state following excitation. Fluorescence lifetime imaging ophthalmoscopy (FLIO) is an emerging imaging modality for in vivo measurement of lifetimes of endogenous retinal fluorophores. Recent reports in this field have contributed to our understanding of the pathophysiology of various macular and retinal diseases. Within this review, the basic concept of fluorescence lifetime imaging is provided. It includes technical background information and correlation with in vitro measurements of individual retinal metabolites. In a second part, clinical applications of fluorescence lifetime imaging and fluorescence lifetime features of selected retinal diseases such as Stargardt disease, age-related macular degeneration, choroideremia, central serous chorioretinopathy, macular holes, diabetic retinopathy, and retinal artery occlusion are discussed. Potential areas of use for fluorescence lifetime imaging ophthalmoscopy will be outlined at the end of this review.
Collapse
Affiliation(s)
- Chantal Dysli
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Sebastian Wolf
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Lydia Sauer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Martin S Zinkernagel
- Department of Ophthalmology and Department of Clinical Research, Inselspital, Bern University Hospital, University of Bern, Switzerland.
| |
Collapse
|
36
|
Feeks JA, Hunter JJ. Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of exogenous fluorophores in mice. BIOMEDICAL OPTICS EXPRESS 2017; 8:2483-2495. [PMID: 28663886 PMCID: PMC5480493 DOI: 10.1364/boe.8.002483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 05/05/2023]
Abstract
In vivo cellular scale fluorescence lifetime imaging of the mouse retina has the potential to be a sensitive marker of retinal cell health. In this study, we demonstrate fluorescence lifetime imaging of extrinsic fluorophores using adaptive optics fluorescence lifetime imaging ophthalmoscopy (AOFLIO). We recorded AOFLIO images of inner retinal cells labeled with enhanced green fluorescent protein (EGFP) and capillaries labeled with fluorescein. We demonstrate that AOFLIO can be used to differentiate spectrally overlapping fluorophores in the retina. With further refinements, AOFLIO could be used to assess retinal health in early stages of degeneration by utilizing lifetime-based sensors or even fluorophores native to the retina.
Collapse
Affiliation(s)
- James A. Feeks
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY 14620, USA
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, NY 14627, USA
| |
Collapse
|