1
|
Bornfeld N, Biewald E. [Liquid biopsy in retinoblastomas]. DIE OPHTHALMOLOGIE 2024:10.1007/s00347-024-02142-1. [PMID: 39537786 DOI: 10.1007/s00347-024-02142-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The liquid biopsy is playing an increasingly more important role in the diagnosis and treatment of retinoblastomas. The possibility of safe and uncomplicated retrieval and examination of aqueous humour from the anterior chamber contributes significantly to the differential diagnosis and to a better understanding of the disease. It helps with the prognosis both in terms of eye-preserving treatment and in estimating the risk of metastatic disease and helps with genetic uncertainties in unilateral disease. It is expected that the further development of liquid biopsy methods will form the basis for a personalized diagnosis and treatment of children with a retinoblastoma in the future.
Collapse
Affiliation(s)
- N Bornfeld
- Universität Duisburg-Essen, Duisburg-Essen, Deutschland.
- Zentrum für Augenheilkunde, Schadowstr. 80, 40212, Düsseldorf, Deutschland.
| | - E Biewald
- Augenklinik der Universitätsmedizin Essen, Essen, Deutschland
| |
Collapse
|
2
|
Ryl T, Afanasyeva E, Hartmann T, Schwermer M, Schneider M, Schröder C, Wagemanns M, Bister A, Kanber D, Steenpass L, Schramm K, Jones B, Jones DTW, Biewald E, Astrahantseff K, Hanenberg H, Rahmann S, Lohmann DR, Schramm A, Ketteler P. A MYCN-driven de-differentiation profile identifies a subgroup of aggressive retinoblastoma. Commun Biol 2024; 7:919. [PMID: 39079981 PMCID: PMC11289481 DOI: 10.1038/s42003-024-06596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Retinoblastoma are childhood eye tumors arising from retinal precursor cells. Two distinct retinoblastoma subtypes with different clinical behavior have been described based on gene expression and methylation profiling. Using consensus clustering of DNA methylation analysis from 61 retinoblastomas, we identify a MYCN-driven cluster of subtype 2 retinoblastomas characterized by DNA hypomethylation and high expression of genes involved in protein synthesis. Subtype 2 retinoblastomas outside the MYCN-driven cluster are characterized by high expression of genes from mesodermal development, including NKX2-5. Knockdown of MYCN expression in retinoblastoma cell models causes growth arrest and reactivates a subtype 1-specific photoreceptor signature. These molecular changes suggest that removing the driving force of MYCN oncogenic activity rescues molecular circuitry driving subtype 1 biology. The MYCN-RB gene signature generated from the cell models better identifies MYCN-driven retinoblastoma than MYCN amplification and can identify cases that may benefit from MYCN-targeted therapy. MYCN drives tumor progression in a molecularly defined retinoblastoma subgroup, and inhibiting MYCN activity could restore a more differentiated and less aggressive tumor biology.
Collapse
Affiliation(s)
- Tatsiana Ryl
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Elena Afanasyeva
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Till Hartmann
- Algorithms for Reproducible Bioinformatics, Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Schwermer
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Markus Schneider
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Christopher Schröder
- Algorithms for Reproducible Bioinformatics, Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maren Wagemanns
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Arthur Bister
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Deniz Kanber
- Institute of Human Genetics, University Hospital Essen, University Duisburg Essen, Essen, Germany
| | - Laura Steenpass
- Human and Animal Cell Lines, Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, 38124, Braunschweig, Germany
| | - Kathrin Schramm
- Division of Pediatric Glioma Research, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Barbara Jones
- Division of Pediatric Glioma Research, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - David T W Jones
- Division of Pediatric Glioma Research, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Eva Biewald
- Department of Ophthalmology, Medical Faculty, University of Duisburg-Essen, 45147, Essen, Germany
| | - Kathy Astrahantseff
- Department of Pediatric Oncology and Hematology, Charité - University Medicine Berlin, Berlin, Germany
| | - Helmut Hanenberg
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany
| | - Sven Rahmann
- Algorithmic Bioinformatics, Center for Bioinformatics Saar and Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
| | - Dietmar R Lohmann
- Institute of Human Genetics, University Hospital Essen, University Duisburg Essen, Essen, Germany
| | - Alexander Schramm
- Laboratory for Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Petra Ketteler
- Department of Pediatric Hematology and Oncology, University Hospital Essen, Essen, Germany.
- Institute of Human Genetics, University Hospital Essen, University Duisburg Essen, Essen, Germany.
| |
Collapse
|
3
|
Haase A, Alefeld E, Yalinci F, Meenen DV, Busch MA, Dünker N. Gastric Inhibitory Polypeptide Receptor (GIPR) Overexpression Reduces the Tumorigenic Potential of Retinoblastoma Cells. Cancers (Basel) 2024; 16:1656. [PMID: 38730608 PMCID: PMC11083251 DOI: 10.3390/cancers16091656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Retinoblastoma (RB) is the most common malignant intraocular tumor in early childhood. Gene expression profiling revealed that the gastric inhibitory polypeptide receptor (GIPR) is upregulated following trefoil factor family peptide 1 (TFF1) overexpression in RB cells. In the study presented, we found this G protein-coupled transmembrane receptor to be co-expressed with TFF1, a new diagnostic and prognostic RB biomarker for advanced subtype 2 RBs. Functional analyses in two RB cell lines revealed a significant reduction in cell viability and growth and a concomitant increase in apoptosis following stable, lentiviral GIPR overexpression, matching the effects seen after TFF1 overexpression. In chicken chorioallantoic membrane (CAM) assays, GIPR-overexpressing RB cells developed significantly smaller CAM tumors. The effect of GIPR overexpression in RB cells was reversed by the GIPR inhibitor MK0893. The administration of recombinant TFF1 did not augment GIPR overexpression effects, suggesting that GIPR does not serve as a TFF1 receptor. Investigations of potential GIPR up- and downstream mediators suggest the involvement of miR-542-5p and p53 in GIPR signaling. Our results indicate a tumor suppressor role of GIPR in RB, suggesting its pathway as a new potential target for future retinoblastoma therapy.
Collapse
|
4
|
Aschero R, Ganiewich D, Lamas G, Restrepo-Perdomo CA, Ottaviani D, Zugbi S, Camarero S, Néspoli E, Vilanova MC, Perez-Jaume S, Pascual-Pasto G, Sampor C, Grigorovski N, Salas B, Suñol M, Carcaboso AM, Mora J, de Dávila MTG, Doz F, Radvanyi F, Abramson DH, Llera AS, Schaiquevich PS, Lubieniecki F, Chantada GL. Immunohistochemical expression of TFF1 is a marker of poor prognosis in retinoblastoma. Pediatr Blood Cancer 2024; 71:e30717. [PMID: 37814421 DOI: 10.1002/pbc.30717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION The risk of relapse in retinoblastoma is currently determined by the presence of high-risk histopathologic factors in the enucleated eye. However, the probability of developing metastatic disease is heterogeneous among these patients. Evaluating a biological marker to identify high-risk patients could be useful in clinical setting. This study aims to evaluate whether the expression of TFF1, a surrogate for subtype 2 retinoblastoma, is a prognostic marker for relapse and death. METHODS This multicenter cohort study included 273 patients, 48 of whom had extraocular disease. Immunohistochemical staining were performed for CRX, ARR3, TFF1, and Ki67. Tumors were classified as histological subtype 1 (HS1) if they had low or no expression of TFF1 (quick score (QS) ≤ 50) and as histological subtype 2 (HS2) if they expressed TFF1 diffusely (QS > 50). We studied the association between HS classification and outcome. RESULTS Of 273 patients, 35.9% were classified as HS1, 59.3% as HS2 and 4.8% were not evaluable. In multivariate analysis, patients with HS2 tumors had a higher probability of relapse and death than those with HS1 (p < .0001 and p = .00020, respectively). We identified a higher-risk subgroup among HS2 tumors, presenting non-mutually exclusive expression of ARR3 and TFF1 and had an increased risk of relapse and death compared with tumors that displayed mutually exclusive expression (p = .012 and p = .027, respectively). CONCLUSIONS Expression of TFF1, especially when it is not-mutually exclusive with ARR3, is an independent significant marker of poor outcome in retinoblastoma.
Collapse
Affiliation(s)
- Rosario Aschero
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Daiana Ganiewich
- Instituto de Investigaciones en Medicina Traslacional - Universidad Austral, Buenos Aires, Argentina
| | - Gabriela Lamas
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | | | - Daniela Ottaviani
- SIREDO Center, Institut Curie and University Paris Cité, Paris, France
| | - Santiago Zugbi
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- Unidad de tratamientos innovadores, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Sandra Camarero
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Ezequiel Néspoli
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Maria Cuadrado Vilanova
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Sara Perez-Jaume
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Guillem Pascual-Pasto
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Claudia Sampor
- Hematology-Oncology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Nathalia Grigorovski
- Department of Pediatric Oncology, Clinical Division, National Institute of Cancer, Rio de Janeiro, Brazil
| | - Beatriz Salas
- Department of Pediatric Oncology, Hospital del Niño Manuel A. Villarroel, Cochabamba, Bolivia
| | - Mariona Suñol
- Pathology Service, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Angel M Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Jaume Mora
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - María T G de Dávila
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - François Doz
- SIREDO Center, Institut Curie and University Paris Cité, Paris, France
| | - François Radvanyi
- SIREDO Center, Institut Curie and University Paris Cité, Paris, France
| | - David H Abramson
- Ophthalmic Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Andrea S Llera
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- Instituto de Investigaciones en Medicina Traslacional - Universidad Austral, Buenos Aires, Argentina
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - Paula S Schaiquevich
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- Unidad de tratamientos innovadores, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Fabiana Lubieniecki
- Pathology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Guillermo L Chantada
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
- Hematology Oncology Service, Hospital Pereyra Rossell, Montevideo, Uruguay
| |
Collapse
|
5
|
Busch MA, Haase A, Alefeld E, Biewald E, Jabbarli L, Dünker N. Trefoil Family Factor Peptide 1-A New Biomarker in Liquid Biopsies of Retinoblastoma under Therapy. Cancers (Basel) 2023; 15:4828. [PMID: 37835522 PMCID: PMC10571905 DOI: 10.3390/cancers15194828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
Effective management of retinoblastoma (RB), the most prevalent childhood eye cancer, depends on reliable monitoring and diagnosis. A promising candidate in this context is the secreted trefoil family factor peptide 1 (TFF1), recently discovered as a promising new biomarker in patients with a more advanced subtype of retinoblastoma. The present study investigated TFF1 expression within aqueous humor (AH) of enucleated eyes and compared TFF1 levels in AH and corresponding blood serum samples from RB patients undergoing intravitreal chemotherapy (IVC). TFF1 was consistently detectable in AH, confirming its potential as a biomarker. Crucially, our data confirmed that TFF1-secreting cells within the tumor mass originate from RB tumor cells, not from surrounding stromal cells. IVC-therapy-responsive patients exhibited remarkably reduced TFF1 levels post-therapy. By contrast, RB patients' blood serum displayed low-to-undetectable levels of TFF1 even after sample concentration and no therapy-dependent changes were observed. Our findings suggest that compared with blood serum, AH represents the more reliable source of TFF1 if used for liquid biopsy RB marker analysis in RB patients. Thus, analysis of TFF1 in AH of RB patients potentially provides a minimally invasive tool for monitoring RB therapy efficacy, suggesting its importance for effective treatment regimens.
Collapse
Affiliation(s)
- Maike Anna Busch
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, Center for Translational Neuro and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (E.A.); (N.D.)
| | - André Haase
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, Center for Translational Neuro and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (E.A.); (N.D.)
| | - Emily Alefeld
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, Center for Translational Neuro and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (E.A.); (N.D.)
| | - Eva Biewald
- Department of Ophthalmology, Children’s Hospital, University of Duisburg-Essen, 45147 Essen, Germany; (E.B.); (L.J.)
| | - Leyla Jabbarli
- Department of Ophthalmology, Children’s Hospital, University of Duisburg-Essen, 45147 Essen, Germany; (E.B.); (L.J.)
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, Center for Translational Neuro and Behavioral Sciences (C-TNBS), University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (E.A.); (N.D.)
| |
Collapse
|
6
|
Busch MA, Haase A, Miroschnikov N, Doege A, Biewald E, Bechrakis NE, Beier M, Kanber D, Lohmann D, Metz K, Dünker N. TFF1 in Aqueous Humor—A Potential New Biomarker for Retinoblastoma. Cancers (Basel) 2022; 14:cancers14030677. [PMID: 35158945 PMCID: PMC8833755 DOI: 10.3390/cancers14030677] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Retinoblastoma is the most common pediatric intraocular malignancy with high cure rates in developed countries. Nevertheless, useful predictive biomarkers providing reliable evidence for therapy decisions are urgently needed to optimize therapy regimes. TFF1 is a promising candidate as it is expressed in a more advanced subtype of retinoblastoma. Additionally, TFF1 is a naturally secreted peptide. Thus, TFF1 might be detectable in the aqueous humor of RB patients’ eyes, providing the opportunity to determine its expression prior to therapy without the necessity of a tumor biopsy. We therefore investigated for the first time aqueous humor samples of retinoblastoma patients in order to test for the availably and expression status of TFF1 as well as to compare it with the original tumor and established corresponding primary cell cultures. Abstract Retinoblastoma (RB) is the most common childhood eye cancer. The expression of trefoil factor family peptide 1 (TFF1), a small secreted peptide, has been correlated with more advanced RB stages and it might be a promising new candidate as a RB biomarker. The study presented addressed the question of if TFF1 is detectable in aqueous humor (AH) of RB patients’ eyes, providing easy accessibility as a diagnostic and/or therapy accompanying predictive biomarker. The TFF1 expression status of 15 retinoblastoma AH samples was investigated by ELISA and Western blot analyses. The results were correlated with the TFF1 expression status in the tumor of origin and compared to TFF1 expression in established corresponding primary tumor cell cultures and supernatants. Nine out of fifteen AH patient samples exhibited TFF1 expression, which correlated well with TFF1 levels of the original tumor. TFF1 expression in most of the corresponding primary cell cultures reflects the levels of the original tumor, although not all TFF1-expressing tumor cells seem to secret into the AH. Together, our findings strongly suggest TFF1 as a reliable new RB biomarker.
Collapse
Affiliation(s)
- Maike Anna Busch
- Center for Translational Neuro- and Behavioral Sciences, Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (N.M.); (A.D.); (N.D.)
- Correspondence: ; Tel.: +49-201-7238-4434
| | - André Haase
- Center for Translational Neuro- and Behavioral Sciences, Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (N.M.); (A.D.); (N.D.)
| | - Natalia Miroschnikov
- Center for Translational Neuro- and Behavioral Sciences, Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (N.M.); (A.D.); (N.D.)
| | - Annika Doege
- Center for Translational Neuro- and Behavioral Sciences, Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (N.M.); (A.D.); (N.D.)
| | - Eva Biewald
- Department of Ophthalmology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (E.B.); (N.E.B.)
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (E.B.); (N.E.B.)
| | - Manfred Beier
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Deniz Kanber
- Institute of Human Genetics, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (D.K.); (D.L.)
| | - Dietmar Lohmann
- Institute of Human Genetics, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (D.K.); (D.L.)
| | - Klaus Metz
- Institute of Pathology, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Nicole Dünker
- Center for Translational Neuro- and Behavioral Sciences, Institute of Anatomy II, Department of Neuroanatomy, Medical Faculty, University of Duisburg-Essen, 45147 Essen, Germany; (A.H.); (N.M.); (A.D.); (N.D.)
| |
Collapse
|
7
|
Urinary biomarkers as point-of-care tests for predicting progressive deterioration of kidney function in congenital anomalies of kidney and urinary tract: trefoil family factors (TFFs) as the emerging biomarkers. Pediatr Nephrol 2021; 36:1465-1472. [PMID: 33420628 DOI: 10.1007/s00467-020-04841-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Children with congenital anomalies of kidney and urinary tract (CAKUT) are at high risk of progressive deterioration of kidney function and further developing stage 5 chronic kidney disease (CKD 5), even after a successful surgery. This prospective study was designed to determine whether urinary biomarkers can predict progressive deterioration of kidney function in children with CAKUT. METHODS The study included 50 consecutive children, aged < 14 years, who were diagnosed with congenital uropathies (PUV, VUR, and PUJO) and 20 age-matched controls. Examination of four urinary biomarkers, i.e., trefoil family factors (TFF) 1 and 3, neutrophil gelatinase-associated lipocalin (NGAL) and microalbuminuria (MALB) was done at the beginning of follow-up. Kidney function was assessed, at the beginning and after 12-months of follow-up, by technetium-99m diethylene triamine pentaacetic acid (DTPA) and technetium-99m dimercaptosuccinic acid (DMSA) scans. Progressive deterioration in the kidney function was defined as a fall in the GFR from ≥ 60 to < 60 ml/min/1.73 m2 on comparing the baseline and latest DTPA scans; and/or new-onset cortical scar/scars or increase in the size of previous scar/scars on serial DMSA scans. Group 1 and group 2 included children without and with progressive functional deterioration respectively. RESULTS The median (IQR) age of children with CAKUT and controls was 3 (1.5-5) and 2.3 (1.2-3.6) years, respectively, and showed no significant difference (p = 0.29). Median concentrations of TFF1, TFF3, NGAL, and microalbumin in patients were 44.5, 176.5, 281.2, and 15.5 mcg/gCr, respectively, and were significantly elevated as compared to controls (p < 0.05). Children belonging to group 2 had significantly higher concentration of biomarkers as compared to those in group 1. TFF3 was found have the highest AUC (0.9198) on ROC curve for predicting progressive functional deterioration. CONCLUSION Urinary TFFs, NGAL, and microalbumin significantly correlate with progressive deterioration of kidney function in children harboring CAKUT. TFF3, with the strongest prediction of functional deterioration, is an emerging peptide showing sufficient potential to be included in the biomarker panel. Graphical abstract.
Collapse
|
8
|
Liao YJ, Yin XL, Deng Y, Peng XW. PRC1 gene silencing inhibits proliferation, invasion, and angiogenesis of retinoblastoma cells through the inhibition of the Wnt/β-catenin signaling pathway. J Cell Biochem 2019; 120:16840-16852. [PMID: 31144388 DOI: 10.1002/jcb.28942] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 04/11/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
Retinoblastoma is an ocular malignancy occurring in childhood. The current study evaluates the ability of silenced PRC1 on retinoblastoma cell proliferation, and angiogenesis via the Wnt/β-catenin signaling pathway. A total of 36 cases of retinoblastoma tissues (n = 36) and normal retinal tissues (n = 10) were selected in the current study. Retinoblastoma cells presenting with the high PRC1 messenger RNA (mRNA) expression were selected among the WERI-Rb-1, HXO-RB44, Y79, SO-Rb50, and SO-Rb70 cells lines, and were transfected with siRNA-PRC1 and LiCl (the activator of the Wnt/β-catenin pathway). The expressions of PRC1, VEGF, Wnt1, β-catenin, CyclinD1, extent of β-catenin, and GSK-3β phosphorylation were evaluated. Cell proliferation, cell-cycle distribution, and cell invasion of retinoblastoma cells were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, and Transwell assay. The angiogenesis of retinoblastoma cells was detected by tube formation assay. HXO-RB44 and WERI-Rb-1 cells were selected owing to the highest PRC1 mRNA expression. Meanwhile, PRC2 gene silencing presented lower expression levels of PRC1, VEGF, Wnt1, β-catenin, CyclinD1, extent of β-catenin and GSK-3β phosphorylation, decreased proliferation and invasion abilities, extended G0/G1 phase, and shortened S and G2/M phases of HXO-RB44 and WERI-Rb-1 cells, suggesting the silenced PRC2 inactivated Wnt/β-catenin pathway, so as to further restrain the retinoblastoma cell proliferation, invasion, and angiogenesis. These results support the view that PRC1 gene silencing could suppress the proliferation, and angiogenesis of retinoblastoma cells by repressing the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yu-Jun Liao
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Xiao-Long Yin
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Yan Deng
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Xiao-Wei Peng
- Department of Pediatric Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|