1
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Pennesi ME, Wang YZ, Birch DG. Deep learning aided measurement of outer retinal layer metrics as biomarkers for inherited retinal degenerations: opportunities and challenges. Curr Opin Ophthalmol 2024; 35:447-454. [PMID: 39259656 DOI: 10.1097/icu.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review was to provide a summary of currently available retinal imaging and visual function testing methods for assessing inherited retinal degenerations (IRDs), with the emphasis on the application of deep learning (DL) approaches to assist the determination of structural biomarkers for IRDs. RECENT FINDINGS (clinical trials for IRDs; discover effective biomarkers as endpoints; DL applications in processing retinal images to detect disease-related structural changes). SUMMARY Assessing photoreceptor loss is a direct way to evaluate IRDs. Outer retinal layer structures, including outer nuclear layer, ellipsoid zone, photoreceptor outer segment, RPE, are potential structural biomarkers for IRDs. More work may be needed on structure and function relationship.
Collapse
Affiliation(s)
- Mark E Pennesi
- Retina Foundation of the Southwest, Dallas, Texas
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Yi-Zhong Wang
- Retina Foundation of the Southwest, Dallas, Texas
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - David G Birch
- Retina Foundation of the Southwest, Dallas, Texas
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
3
|
Ruiz-Matos SJ, Ruiz-Justiz AJ, Izquierdo N. Retinitis Pigmentosa Sine Pigmento in a Patient With a Heterozygous Mutation on the KIF7 Gene: A Case Report. Cureus 2024; 16:e62689. [PMID: 39036105 PMCID: PMC11259021 DOI: 10.7759/cureus.62689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Mutations in the KIF7 gene have been implicated in autosomal recessive conditions such as Joubert syndrome, acrocallosal syndrome, and fetal hydrolethalus, as well as in retinal degeneration and other ocular manifestations due to their effect on primary cilia. In this study, we report that the full-field electroretinogram (ERG) test showed non-recordable scotopic ERG responses, while photopic ERG responses were diminished bilaterally. This is a case report of a 62-year-old female patient with painless, progressive vision loss in both eyes. Fundus examination revealed a pale optic nerve head, vessel attenuation, and macular thinning without peripheral pigmentary changes. The full-field electroretinogram (ERG) test showed non-recordable scotopic ERG responses, while photopic ERG responses were diminished bilaterally. Based on these ocular findings, the patient was clinically diagnosed with retinitis pigmentosa (RP) sine pigmento. Genetic testing identified a pathogenic heterozygous mutation in the KIF7 gene with the variant c.61C>T (p.Arg21*). Our case suggests that this pathologic variant may be associated with RP sine pigmento. Further studies are warranted to better understand the role of the KIF7 gene in retinal dystrophies.
Collapse
Affiliation(s)
- Sebastián J Ruiz-Matos
- Department of Ophthalmology, University of Puerto Rico, Medical Sciences Campus, San Juan, PRI
| | - Armando J Ruiz-Justiz
- Department of Ophthalmology, University of Puerto Rico, Medical Sciences Campus, San Juan, PRI
| | - Natalio Izquierdo
- Department of Surgery, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PRI
| |
Collapse
|
4
|
Fraser CE, Vaphiades MS, Van Stavern GP, Lee AG. Should Visual Snow and Visual Snow Syndrome Be Evaluated Outside of Standard In-clinic Ophthalmologic Testing? J Neuroophthalmol 2022; 42:384-389. [PMID: 35921623 DOI: 10.1097/wno.0000000000001675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Clare E Fraser
- Faculty of Health and Medicine (CF), Department of Ophthalmology, Save Sight Institute, University of Sydney, Sydney, Australia; Departments of Ophthalmology, Neurology and Neurosurgery (MV), University of Alabama, Birmingham, Alabama; Department of Ophthalmology and Visual Sciences (GPV), Washington University in St. Louis School of Medicine, St Louis, Missouri; and Department of Ophthalmology, Blanton Eye Institute (AGL), Houston Methodist Hospital, Houston, Texas
| | | | | | | |
Collapse
|