1
|
Wang M, Liu K, Wang X, Shang Z, Liu Y, Pan N, Sun X, Xu W. Limbal stem cells carried by a four-dimensional -printed chitosan-based scaffold for corneal epithelium injury in diabetic rabbits. Front Physiol 2024; 15:1285850. [PMID: 38887317 PMCID: PMC11180886 DOI: 10.3389/fphys.2024.1285850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Methods: Herein, we obtained and characterized deltaN p63- and adenosine triphosphate-binding cassette subfamily G member 2-expressing limbal stem cells (LSCs). Chitosan and carboxymethyl chitosan (CTH) were cross-linked to be an in situ thermosensitive hydrogel (ACH), which was printed through four-dimensional (4D) printing to obtain a porous carrier with uniform pore diameter (4D-CTH). Rabbits were injected with alloxan to induce diabetes mellitus (DM). Following this, the LSC-carrying hydrogel was spread on the surface of the cornea of the diabetic rabbits to cure corneal epithelium injury. Results: Compared with the control group (LSCs only), rapid wound healing was observed in rabbits treated with LSC-carrying 4D-CTH. Furthermore, the test group also showed better corneal nerve repair ability. The results indicated the potential of LSC-carrying 4D-CTH in curing corneal epithelium injury. Conclusion: 4D-CTH holds potential as a useful tool for studying regenerative processes occurring during the treatment of various diabetic corneal epithelium pathologies with the use of stem cell-based technologies.
Collapse
Affiliation(s)
- Mengyuan Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Kaibin Liu
- Department of Thoracic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaomin Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Zhen Shang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Yiming Liu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Nailong Pan
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Xueqing Sun
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Woronkowicz M, Roberts H, Skopiński P. The Role of Insulin-like Growth Factor (IGF) System in the Corneal Epithelium Homeostasis-From Limbal Epithelial Stem Cells to Therapeutic Applications. BIOLOGY 2024; 13:144. [PMID: 38534414 DOI: 10.3390/biology13030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
The corneal epithelium, comprising three layers of cells, represents the outermost portion of the eye and functions as a vital protective barrier while concurrently serving as a critical refractive structure. Maintaining its homeostasis involves a complex regenerative process facilitated by the functions of the lacrimal gland, tear film, and corneal nerves. Crucially, limbal epithelial stem cells located in the limbus (transitional zone between the cornea and the conjunctiva) are instrumental for the corneal epithelium integrity by replenishing and renewing cells. Re-epithelialization failure results in persistent defects, often associated with various ocular conditions including diabetic keratopathy. The insulin-like growth factor (IGF) system is a sophisticated network of insulin and other proteins essential for numerous physiological processes. This review examines its role in maintaining the corneal epithelium homeostasis, with a special focus on the interplay with corneal limbal stem cells and the potential therapeutic applications of the system components.
Collapse
Affiliation(s)
- Małgorzata Woronkowicz
- NDDH, Royal Devon University Healthcare NHS Foundation Trust, Barnstaple EX31 4JB, UK
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
| | - Harry Roberts
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
- University of Exeter Medical School, Exeter EX1 2HZ, UK
| | - Piotr Skopiński
- Department of Ophthalmology, SPKSO Ophthalmic University Hospital, Medical University of Warsaw, 00-576 Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
3
|
Wang X, Luan F, Yue H, Song C, Wang S, Feng J, Zhang X, Yang W, Li Y, Wei W, Tao Y. Recent advances of smart materials for ocular drug delivery. Adv Drug Deliv Rev 2023; 200:115006. [PMID: 37451500 DOI: 10.1016/j.addr.2023.115006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Owing to the variety and complexity of ocular diseases and the natural ocular barriers, drug therapy for ocular diseases has significant limitations, such as poor drug targeting to the site of the disease, poor drug penetration, and short drug retention time in the vitreous body. With the development of biotechnology, biomedical materials have reached the "smart" stage. To date, despite their inability to overcome all the aforementioned drawbacks, a variety of smart materials have been widely tested to treat various ocular diseases. This review analyses the most recent developments in multiple smart materials (inorganic particles, polymeric particles, lipid-based particles, hydrogels, and devices) to treat common ocular diseases and discusses the future directions and perspectives regarding clinical translation issues. This review can help researchers rationally design more smart materials for specific ocular applications.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Fuxiao Luan
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Cui Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jing Feng
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yuxin Li
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China.
| |
Collapse
|
4
|
Ayilam Ramachandran R, Sanches JM, Robertson DM. The roles of autophagy and mitophagy in corneal pathology: current knowledge and future perspectives. Front Med (Lausanne) 2023; 10:1064938. [PMID: 37153108 PMCID: PMC10160402 DOI: 10.3389/fmed.2023.1064938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/16/2023] [Indexed: 05/09/2023] Open
Abstract
The cornea is the clear dome that covers the front portion of the globe. The primary functions of the cornea are to promote the refraction of light and to protect the eye from invading pathogens, both of which are essential for the preservation of vision. Homeostasis of each cellular layer of the cornea requires the orchestration of multiple processes, including the ability to respond to stress. One mechanism whereby cells respond to stress is autophagy, or the process of "self-eating." Autophagy functions to clear damaged proteins and organelles. During nutrient deprivation, amino acids released from protein breakdown via autophagy are used as a fuel source. Mitophagy, a selective form of autophagy, functions to clear damaged mitochondria. Thus, autophagy and mitophagy are important intracellular degradative processes that sustain tissue homeostasis. Importantly, the inhibition or excessive activation of these processes result in deleterious effects on the cell. In the eye, impairment or inhibition of these mechanisms have been associated with corneal disease, degenerations, and dystrophies. This review summarizes the current body of knowledge on autophagy and mitophagy at all layers in the cornea in both non-infectious and infectious corneal disease, dystrophies, and degenerations. It further highlights the critical gaps in our understanding of mitochondrial dysfunction, with implications for novel therapeutics in clinical practice.
Collapse
Affiliation(s)
| | - Jose Marcos Sanches
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Danielle M Robertson
- Department of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
5
|
Bu Y, Shih KC, Tong L. The ocular surface and diabetes, the other 21st Century epidemic. Exp Eye Res 2022; 220:109099. [DOI: 10.1016/j.exer.2022.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
|
6
|
Stuard WL, Guner MK, Robertson DM. IGFBP-3 Regulates Mitochondrial Hyperfusion and Metabolic Activity in Ocular Surface Epithelia during Hyperosmolar Stress. Int J Mol Sci 2022; 23:ijms23074066. [PMID: 35409425 PMCID: PMC9000157 DOI: 10.3390/ijms23074066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
In the eye, hyperosmolarity of the precorneal tear film triggers inflammation and the development of dry eye disease (DED), a highly prevalent condition that causes depression and disability in severe forms. A member of the insulin-like growth factor (IGF) family, the IGF binding protein-3 (IGFBP-3), is a pleiotropic protein with known roles in growth downregulation and survival. IGFBP-3 exerts these effects by blocking IGF-1 activation of the type 1 IGF-receptor (IGF-1R). Here, we examined a new IGF-independent role for IGFBP-3 in the regulation of mitochondrial and metabolic activity in ocular surface epithelial cells subject to hyperosmolar stress and in a mouse model of DED. We found that hyperosmolar stress decreased IGFBP-3 expression in vitro and in vivo. Treatment with exogenous IGFBP-3 induced an early, transient shift in IGF-1R to mitochondria, followed by IGFBP-3 nuclear accumulation. IGFBP-3 nuclear accumulation increased protein translation, blocked the hyperosmolar-mediated decrease in oxidative phosphorylation through the induction of mitochondrial hyperfusion, and restored corneal health in vivo. These data indicate that IGFBP-3 acts a stress response protein in ocular surface epithelia subject to hyperosmolar stress. These findings may lead to the development of first-in-class therapeutics to treat eye diseases with underlying mitochondrial dysfunction.
Collapse
|
7
|
Chen K, Sheng M, Zhang J, Yan G, Li B. Plasma exosomal proteomic studies of corneal epithelial injury in diabetic and non-diabetic group. Exp Eye Res 2021; 212:108794. [PMID: 34656547 DOI: 10.1016/j.exer.2021.108794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Diabetic Keratopathy (DK) is one of the significant complications of type II diabetes (T2DM) with pathogenesis not yet clarified. Since hyperglycemia is able to change the protein components contained in plasma exosomes, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is considered as feasible to analyze the expression of plasma exosomal proteins in patients with T2DM and non-diabetic patients respectively, find critical biological markers, and explore the mechanism of DK as well as potential therapeutic targets. METHOD Blood and clinical information of corneal epithelial injury in a diabetic group (the study group) and a non-diabetic group (the control group), who were patients admitted to the Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine from July 2020 to November 2020, were collected. The qEV size exclusion method was adopted to separate exosomes from plasma. The exosomes were then identified through transmission electron microscopy (TEM), nanoparticle tracking analyzer (NTA), and Western blot. The plasma exosomes of the study group and the control group were quantitatively analyzed by proteomics. A bioinformatics method is utilized to screen differential proteins and the expression of the differential proteins was verified by Western blot. RESULT TEM indicated that the exosomes had a double-concave disc-like appearance, with a size of about 100 nm, and Western blot expressed as CD63 and TSG101. The plasma exosomes of the study group and the control group were analyzed by quantitative proteomics with a total number of 952 proteins detected of which 245 proteins existed in the ExoCarta exosomal protein database. Through adoption of P-value to screen credible differential proteins, the heat map displayed 28 differential proteins, 7 upregulated proteins, and 21 downregulated proteins; the volcano map displayed 7 upregulated proteins and 22 downregulated proteins; the PPI interaction map displayed 12 upregulated proteins and 18 downregulated proteins. Through GO enrichment analysis, it was identified that the differential protein participated in the main biological processes and was involved in regulating the cell's stimulation response to insulin, the insulin receptor signaling pathway, and the activity of glycosylphosphatidylinositol phospholipase D as well as anti-oxidation. The enriched cell components include main components such as exosomes, blood particles, and cytoplasm. KEGG enrichment analysis indicated that the target protein FLOT2 was mainly concentrated in insulin-related signaling pathways. Western blot indicated that the expression of FLOT2 in the study group was lower compared with the control group while the expression of Exo70 was higher. CONCLUSION Proteomic analysis of the study group and the control group displayed a variety of proteins in plasma exosomes. The downregulated protein FLOT2 in the study group was closely related to the occurrence, development, and complication of DK in T2DM patients. The expression status of plasma FLOT2 protein in T2DM patients is expected to be a biomarker for diagnosing and monitoring of DK.
Collapse
Affiliation(s)
- Kaichuan Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China; Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Minjie Sheng
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Jie Zhang
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Guoquan Yan
- Institutes of Biomedical Science Fudan University, 131# Dong'an Rd, Shanghai, 200032, PR China
| | - Bing Li
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| |
Collapse
|
8
|
Alotaibi S, Markoulli M, Ozkan J, Papas E. Bio-chemical markers of chronic, non-infectious disease in the human tear film. Clin Exp Optom 2021; 105:166-176. [PMID: 34592130 DOI: 10.1080/08164622.2021.1974282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The tear film is a thin, moist layer covering the ocular surface and is laden with proteins, peptides, lipids, mucins, electrolytes and cellular debris which function to maintain the healthy status of the ocular surface. In many cases of ocular or systemic disease, the integrity of this layer is changed and/or the balance of its constituents is disturbed. Since tears are easy and quick to collect and can be stored for long periods, they have the potential to be a valuable source of information relevant to many disease states. The purpose of this review is to collate information on the known biomarkers of systemic disease that have been identified in tears. The range of conditions covered includes diabetes mellitus, diabetic retinopathy, diabetic peripheral neuropathy, multiple sclerosis, Parkinson's disease, Alzheimer's disease, migraine, systemic sclerosis, cystic fibrosis, thyroid disorders and cancer.
Collapse
Affiliation(s)
- Sultan Alotaibi
- Department of Optometry & Vision Science, University of New South Wales, Sydney, Australia.,King Saud University, Riyadh, Saudi Arabia
| | - Maria Markoulli
- Department of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| | - Jerome Ozkan
- Department of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| | - Eric Papas
- Department of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
9
|
Shah R, Amador C, Tormanen K, Ghiam S, Saghizadeh M, Arumugaswami V, Kumar A, Kramerov AA, Ljubimov AV. Systemic diseases and the cornea. Exp Eye Res 2021; 204:108455. [PMID: 33485845 PMCID: PMC7946758 DOI: 10.1016/j.exer.2021.108455] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
There is a number of systemic diseases affecting the cornea. These include endocrine disorders (diabetes, Graves' disease, Addison's disease, hyperparathyroidism), infections with viruses (SARS-CoV-2, herpes simplex, varicella zoster, HTLV-1, Epstein-Barr virus) and bacteria (tuberculosis, syphilis and Pseudomonas aeruginosa), autoimmune and inflammatory diseases (rheumatoid arthritis, Sjögren's syndrome, lupus erythematosus, gout, atopic and vernal keratoconjunctivitis, multiple sclerosis, granulomatosis with polyangiitis, sarcoidosis, Cogan's syndrome, immunobullous diseases), corneal deposit disorders (Wilson's disease, cystinosis, Fabry disease, Meretoja's syndrome, mucopolysaccharidosis, hyperlipoproteinemia), and genetic disorders (aniridia, Ehlers-Danlos syndromes, Marfan syndrome). Corneal manifestations often provide an insight to underlying systemic diseases and can act as the first indicator of an undiagnosed systemic condition. Routine eye exams can bring attention to potentially life-threatening illnesses. In this review, we provide a fairly detailed overview of the pathologic changes in the cornea described in various systemic diseases and also discuss underlying molecular mechanisms, as well as current and emerging treatments.
Collapse
Affiliation(s)
- Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vaithi Arumugaswami
- Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|