1
|
Tîrziu AT, Susan M, Susan R, Sonia T, Harich OO, Tudora A, Varga NI, Tiberiu-Liviu D, Avram CR, Boru C, Munteanu M, Horhat FG. From Gut to Eye: Exploring the Role of Microbiome Imbalance in Ocular Diseases. J Clin Med 2024; 13:5611. [PMID: 39337098 PMCID: PMC11432523 DOI: 10.3390/jcm13185611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The gut microbiome plays a crucial role in human health, and recent research has highlighted its potential impact on ocular health through the gut-eye axis. Dysbiosis, or an imbalance in the gut microbiota, has been implicated in various ocular diseases. Methods: A comprehensive literature search was conducted using relevant keywords in major electronic databases, prioritizing recent peer-reviewed articles published in English. Results: The gut microbiota influences ocular health through immune modulation, maintenance of the blood-retinal barrier, and production of beneficial metabolites. Dysbiosis can disrupt these mechanisms, contributing to ocular inflammation, tissue damage, and disease progression in conditions such as uveitis, age-related macular degeneration, diabetic retinopathy, dry eye disease, and glaucoma. Therapeutic modulation of the gut microbiome through probiotics, prebiotics, synbiotics, and fecal microbiota transplantation shows promise in preclinical and preliminary human studies. Conclusions: The gut-eye axis represents a dynamic and complex interplay between the gut microbiome and ocular health. Targeting the gut microbiome through innovative therapeutic strategies holds potential for improving the prevention and management of various ocular diseases.
Collapse
Affiliation(s)
- Andreea-Talida Tîrziu
- Department of General Medicine, Doctoral School, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department of Ophthalmology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Monica Susan
- Centre for Preventive Medicine, Department of Internal Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Razvan Susan
- Centre for Preventive Medicine, Department of Family Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Tanasescu Sonia
- Department of Pediatrics, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Octavia Oana Harich
- Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Adelina Tudora
- Multidisciplinary Doctoral School, Vasile Goldis Western University of Arad, Strada Liviu Rebreanu 86, 310419 Arad, Romania
| | - Norberth-Istvan Varga
- Department of General Medicine, Doctoral School, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dragomir Tiberiu-Liviu
- Medical Semiology II Discipline, Internal Medicine Department, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Cecilia Roberta Avram
- Department of Residential Training and Post-University Courses, "Vasile Goldis" Western University, 310414 Arad, Romania
| | - Casiana Boru
- Department of Medicine, "Vasile Goldis" University of Medicine and Pharmacy, 310414 Arad, Romania
| | - Mihnea Munteanu
- Department of Ophthalmology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Florin George Horhat
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
2
|
Cong Y, Zhang Y, Han Y, Wu Y, Wang D, Zhang B. Recommendations for nutritional supplements for dry eye disease: current advances. Front Pharmacol 2024; 15:1388787. [PMID: 38873421 PMCID: PMC11169594 DOI: 10.3389/fphar.2024.1388787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/17/2024] [Indexed: 06/15/2024] Open
Abstract
Dry eye disease (DED) represents a prevalent ocular surface disease. The development of effective nutritional management strategies for DED is crucial due to its association with various factors such as inflammation, oxidative stress, deficiencies in polyunsaturated fatty acids (PUFAs), imbalanced PUFA ratios, and vitamin insufficiencies. Extensive research has explored the impact of oral nutritional supplements, varying in composition and dosage, on the symptoms of DED. The main components of these supplements include fish oils (Omega-3 fatty acids), vitamins, trace elements, and phytochemical extracts. Beyond these well-known nutrients, it is necessary to explore whether novel nutrients might contribute to more effective DED management. This review provides a comprehensive update on the therapeutic potential of nutrients and presents new perspectives for combination supplements in DED treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Bingjie Zhang
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Wu Y, Fan H, Feng Y, Yang J, Cen X, Li W. Unveiling the gut microbiota and metabolite profiles in guinea pigs with form deprivation myopia through 16S rRNA gene sequencing and untargeted metabolomics. Heliyon 2024; 10:e30491. [PMID: 38756593 PMCID: PMC11096930 DOI: 10.1016/j.heliyon.2024.e30491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Aim The aim of this study was to confirm the presence of the form deprivation myopia (FDM) guinea pig eye-gut axis and investigate the relationship between serum vasoactive intestinal peptide (VIP), lipopolysaccharides (LPS), specific gut microbiota and their metabolites. Method 20 specific-pathogen-free (SPF) guinea pigs were divided into the FDM and the control(Con) group. Following model induction, serum levels of VIP and LPS were quantified. A combination of 16S ribosomal ribosomal Ribonucleic Acid (rRNA) gene sequencing, non-targeted metabolomics and bioinformatics analysis were employed to identify disparities in gut microbiota and metabolites between the two groups of guinea pigs. Result Compared to the control group, FDM guinea pigs exhibited a significant trend towards myopia, along with significantly elevated concentrations of LPS and VIP (p < 0.0001). Furthermore, Ruminococcus_albus emerged as the predominant bacterial community enriched in FDM (p < 0.05), and demonstrated positive correlations with 10 metabolites, including l-Glutamic acid, Additionally, Ruminococcus_albus exhibited positive correlations with VIP and LPS levels (p < 0.05). Conclusion The findings suggest that the Ruminococcus_Albus and glutamate metabolic pathways play a significant role in myopia development, leading to concurrent alterations in serum VIP and LPS levels in FDM guinea pigs. This underscores the potential of specific gut microbiota and their metabolites as pivotal biomarkers involved in the pathogenesis of myopia.
Collapse
Affiliation(s)
- Yajun Wu
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, 410000, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, 200235, China
- Shanghai Aier Eye Institute, Shanghai, 200235, China
| | - Hua Fan
- Shanxi Aier Eye Hospital, Taiyuan, Shanxi, 030000, China
| | - Yuliang Feng
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, 410000, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, 200235, China
- Shanghai Aier Eye Institute, Shanghai, 200235, China
| | - Jiasong Yang
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, 410000, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, 200235, China
- Shanghai Aier Eye Institute, Shanghai, 200235, China
| | - Xiaobo Cen
- WestChina-Frontier PharmaTech Co., Ltd, Chengdu, Sichuan, 610000, China
| | - Wensheng Li
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, 410000, China
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, 200235, China
- Shanghai Aier Eye Institute, Shanghai, 200235, China
| |
Collapse
|
4
|
Roucaute E, Huertas-Bello M, Sabater AL. Novel treatments for dry eye syndrome. Curr Opin Pharmacol 2024; 75:102431. [PMID: 38277944 DOI: 10.1016/j.coph.2024.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/28/2024]
Abstract
Dry eye syndrome (DES) is a prevalent and multifactorial disease that leads to a self-perpetuating cycle of inflammation and damage to the ocular surface. This results in symptoms such as redness, burning, and blurred vision, which can negatively affect a patient's quality of life. While treatments are available to manage DES, they only temporarily relieve symptoms. Furthermore, long-term use of certain medications can cause harm to the ocular surface. Therefore, there is a need for safer and effective treatments for DES. This review highlights the latest advancements in DES therapy, providing valuable insights into ongoing efforts to improve patient outcomes.
Collapse
Affiliation(s)
- Esther Roucaute
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marcela Huertas-Bello
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alfonso L Sabater
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
5
|
Campagnoli LIM, Varesi A, Barbieri A, Marchesi N, Pascale A. Targeting the Gut-Eye Axis: An Emerging Strategy to Face Ocular Diseases. Int J Mol Sci 2023; 24:13338. [PMID: 37686143 PMCID: PMC10488056 DOI: 10.3390/ijms241713338] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The human microbiota refers to a large variety of microorganisms (bacteria, viruses, and fungi) that live in different human body sites, including the gut, oral cavity, skin, and eyes. In particular, the presence of an ocular surface microbiota with a crucial role in maintaining ocular surface homeostasis by preventing colonization from pathogen species has been recently demonstrated. Moreover, recent studies underline a potential association between gut microbiota (GM) and ocular health. In this respect, some evidence supports the existence of a gut-eye axis involved in the pathogenesis of several ocular diseases, including age-related macular degeneration, uveitis, diabetic retinopathy, dry eye, and glaucoma. Therefore, understanding the link between the GM and these ocular disorders might be useful for the development of new therapeutic approaches, such as probiotics, prebiotics, symbiotics, or faecal microbiota transplantation through which the GM could be modulated, thus allowing better management of these diseases.
Collapse
Affiliation(s)
| | - Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | - Annalisa Barbieri
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| | - Alessia Pascale
- Department of Drug Sciences, Unit of Pharmacology, University of Pavia, 27100 Pavia, Italy; (A.B.); (N.M.)
| |
Collapse
|
6
|
Fu X, Tan H, Huang L, Chen W, Ren X, Chen D. Gut microbiota and eye diseases: a bibliometric study and visualization analysis. Front Cell Infect Microbiol 2023; 13:1225859. [PMID: 37621873 PMCID: PMC10445766 DOI: 10.3389/fcimb.2023.1225859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Recently the role of gut microbial dysbiosis in many ocular disorders, including but not limited to uveitis, age-related macular degeneration (AMD), diabetic retinopathy (DR), dry eye, keratitis and orbitopathy is a hot research topic in the field. Targeting gut microbiota to treat these diseases has become an unstoppable trend. Bibliometric study and visualization analysis have become essential methods for literature analysis in the medical research field. We aim to depict this area's research hotspots and future directions by bibliometric software and methods. Methods We search all the related publications from the Web of Science Core Collection. Then, CiteSpace was applied to analyze and visualize the country distributions, dual-map overlay of journals, keyword bursts, and co-cited references. VOSviewer was employed to identify authors, co-cited authors, journals and co-cited journals and display the keyword co-occurrence networks. Results A total of 284 relevant publications were identified from 2009 to 2023. The number of studies has been small in the first five years and has grown steadily since 2016. These studies were completed by 1,376 authors from 41 countries worldwide, with the United States in the lead. Lin P has published the most papers while Horai R is the most co-cited author. The top journal and co-cited journal are both Investigative Ophthalmology & Visual Science. In the keyword co-occurrence network, except gut microbiota, inflammation becomes the keyword with the highest frequency. Co-citation analyses reveal that gut dysbiosis is involved in common immune- and inflammation-mediated eye diseases, including uveitis, diabetic retinopathy, age-related macular degeneration, dry eye, and Graves' orbitopathy, and the study of microbiomes is no longer limited to the bacterial populations. Therapeutic strategies that target the gut microbiota, such as probiotics, healthy diet patterns, and fecal microbial transplantation, are effective and critical to future research. Conclusions In conclusion, the bibliometric analysis displays the research hotspots and developmental directions of the involvement of gut microbiota in the pathogenesis and treatment of some ocular diseases. It provides an overview of this field's dynamic evolution and structural relationships.
Collapse
Affiliation(s)
- Xiangyu Fu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haishan Tan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Huang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyue Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Danian Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Serban D, Dascalu AM, Arsene AL, Tribus LC, Vancea G, Pantea Stoian A, Costea DO, Tudosie MS, Stana D, Cristea BM, Nicolae VA, Tudor C, Costea AC, Comandasu M, Faur M, Tanasescu C. Gut Microbiota Dysbiosis in Diabetic Retinopathy-Current Knowledge and Future Therapeutic Targets. Life (Basel) 2023; 13:968. [PMID: 37109497 PMCID: PMC10144923 DOI: 10.3390/life13040968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetic retinopathy is one of the major causes of blindness today, despite important achievements in diagnosis and therapy. The involvement of a gut-retina axis is thought to be a possible risk factor for several chronic eye disease, such as glaucoma, age-related macular degeneration, uveitis, and, recently, diabetic retinopathy. Dysbiosis may cause endothelial disfunction and alter retinal metabolism. This review analyzes the evidence regarding changes in gut microbiota in patients with DR compared with diabetics and healthy controls (HCs). A systematic review was performed on PubMed, Web of Science, and Google Scholar for the following terms: "gut microbiota" OR "gut microbiome" AND "diabetic retinopathy". Ultimately, 9 articles published between 2020 and 2022 presenting comparative data on a total of 228 T2DM patients with DR, 220 patients with T2DM, and 118 HCs were analyzed. All of the studies found a distinctive microbial beta diversity in DR vs. T2DM and HC, characterized by an altered Firmicutes/Bacteroidetes ratio, a decrease in butyrate producers, and an increase in LPS-expressing and pro-inflammatory species in the Bacteroidetes and Proteobacteria phyla. The probiotic species Bifidobacterium and Lactobacillus were decreased when compared with T2DM. Gut microbiota influence retinal health in multiple ways and may represent a future therapeutic target in DR.
Collapse
Affiliation(s)
- Dragos Serban
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
- Fourth Surgery Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Ana Maria Dascalu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
- Ophthalmology Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Andreea Letitia Arsene
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laura Carina Tribus
- Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Internal Medicine, Ilfov Emergency Clinic Hospital, 022113 Bucharest, Romania
| | - Geta Vancea
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
- “Victor Babes” Infectious and Tropical Disease Hospital, 030303 Bucharest, Romania
| | - Anca Pantea Stoian
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
| | - Daniel Ovidiu Costea
- Faculty of Medicine, Ovidius University Constanta, 900470 Constanta, Romania
- General Surgery Department, Emergency County Hospital Constanta, 900591 Constanta, Romania
| | - Mihail Silviu Tudosie
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
| | - Daniela Stana
- Ophthalmology Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Bogdan Mihai Cristea
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
| | - Vanessa Andrada Nicolae
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
- Ophthalmology Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Corneliu Tudor
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.S.)
- Fourth Surgery Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | | | - Meda Comandasu
- Fourth Surgery Department, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Mihai Faur
- Faculty of Medicine, University “Lucian Blaga”, 550169 Sibiu, Romania
- Department of Surgery, Emergency County Hospital Sibiu, 550245 Sibiu, Romania
| | - Ciprian Tanasescu
- Faculty of Medicine, University “Lucian Blaga”, 550169 Sibiu, Romania
- Department of Surgery, Emergency County Hospital Sibiu, 550245 Sibiu, Romania
| |
Collapse
|