1
|
Miao M, Wu M, Li Y, Zhang L, Jin Q, Fan J, Xu X, Gu R, Hao H, Zhang A, Jia Z. Clinical Potential of Hypoxia Inducible Factors Prolyl Hydroxylase Inhibitors in Treating Nonanemic Diseases. Front Pharmacol 2022; 13:837249. [PMID: 35281917 PMCID: PMC8908211 DOI: 10.3389/fphar.2022.837249] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Hypoxia inducible factors (HIFs) and their regulatory hydroxylases the prolyl hydroxylase domain enzymes (PHDs) are the key mediators of the cellular response to hypoxia. HIFs are normally hydroxylated by PHDs and degraded, while under hypoxia, PHDs are suppressed, allowing HIF-α to accumulate and transactivate multiple target genes, including erythropoiesis, and genes participate in angiogenesis, iron metabolism, glycolysis, glucose transport, cell proliferation, survival, and so on. Aiming at stimulating HIFs, a group of small molecules antagonizing HIF-PHDs have been developed. Of these HIF-PHDs inhibitors (HIF-PHIs), roxadustat (FG-4592), daprodustat (GSK-1278863), vadadustat (AKB-6548), molidustat (BAY 85-3934) and enarodustat (JTZ-951) are approved for clinical usage or have progressed into clinical trials for chronic kidney disease (CKD) anemia treatment, based on their activation effect on erythropoiesis and iron metabolism. Since HIFs are involved in many physiological and pathological conditions, efforts have been made to extend the potential usage of HIF-PHIs beyond anemia. This paper reviewed the progress of preclinical and clinical research on clinically available HIF-PHIs in pathological conditions other than CKD anemia.
Collapse
Affiliation(s)
- Mengqiu Miao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yuting Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Lingge Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Qianqian Jin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Fan
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Xinyue Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Ran Gu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Pang K, Lennikov A, Yang M. Hypoxia adaptation in the cornea: Current animal models and underlying mechanisms. Animal Model Exp Med 2021; 4:300-310. [PMID: 34977481 PMCID: PMC8690994 DOI: 10.1002/ame2.12192] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
The cornea is an avascular, transparent tissue that is essential for visual function. Any disturbance to the corneal transparency will result in a severe vision loss. Due to the avascular nature, the cornea acquires most of the oxygen supply directly or indirectly from the atmosphere. Corneal tissue hypoxia has been noticed to influence the structure and function of the cornea for decades. The etiology of hypoxia of the cornea is distinct from the rest of the body, mainly due to the separation of cornea from the atmosphere, such as prolonged contact lens wearing or closed eyes. Corneal hypoxia can also be found in corneal inflammation and injury when a higher oxygen requirement exceeds the oxygen supply. Systemic hypoxic state during lung diseases or high altitude also leads to corneal hypoxia when a second oxygen consumption route from aqueous humor gets blocked. Hypoxia affects the cornea in multiple aspects, including disturbance of the epithelium barrier function, corneal edema due to endothelial dysfunction and metabolism changes in the stroma, and thinning of corneal stroma. Cornea has also evolved mechanisms to adapt to the hypoxic state initiated by the activation of hypoxia inducible factor (HIF). The aim of this review is to introduce the pathology of cornea under hypoxia and the mechanism of hypoxia adaptation, to discuss the current animal models used in this field, and future research directions.
Collapse
Affiliation(s)
- Kunpeng Pang
- Harvard Medical School Department of OphthalmologySchepens Eye Research InstituteMassachusetts Eye and EarBostonMassachusettsUSA
- Department of OphthalmologyQilu Hospital of Shandong UniversityQingdaoChina
| | - Anton Lennikov
- Harvard Medical School Department of OphthalmologySchepens Eye Research InstituteMassachusetts Eye and EarBostonMassachusettsUSA
| | - Menglu Yang
- Harvard Medical School Department of OphthalmologySchepens Eye Research InstituteMassachusetts Eye and EarBostonMassachusettsUSA
| |
Collapse
|
3
|
Faye PA, Poumeaud F, Chazelas P, Duchesne M, Rassat M, Miressi F, Lia AS, Sturtz F, Robert PY, Favreau F, Benayoun Y. Focus on cell therapy to treat corneal endothelial diseases. Exp Eye Res 2021; 204:108462. [PMID: 33493477 DOI: 10.1016/j.exer.2021.108462] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
The cornea is a multi-layered structure which allows fine refraction and provides both resistance to external insults and adequate transparency. The corneal endothelium ensures stromal hydration, failure of which, such as in Fuchs endothelial corneal dystrophy, after trauma or in aging, may lead to loss of corneal transparency and induce blindness. Currently, no efficient therapeutic alternatives exist except for corneal grafting. Thus corneal tissue engineering represents a valuable alternative approach, which may overcome cornea donor shortage. Several studies describe protocols to isolate, differentiate, and cultivate corneal endothelial cells (CEnCs) in vitro. Two main in vitro strategies can be described: expansion of eye-native cell populations, such as CEnCs, or the production and expansion of CEnCs from non-eye native cell populations, such as induced Pluripotent Stem Cells (iPSCs). The challenge with these cells is to obtain a monolayer of CEnCs on a biocompatible carrier, with a specific morphology (flat hexagonal cells), and with specific functions such as programmed cell cycle arrest. Another issue for this cell culture methodology is to define the adapted protocol (media, trophic factors, timeframe) that can mimic physiological development. Additionally, contamination by other cell types still represents a huge problem. Thus, purification methods, such as Fluorescence Activated Cell Sorting (FACS), Magnetic Ativated Cell Sorting (MACS) or Sedimentation Field Flow Fractionation (SdFFF) are useful. Animal models are also crucial to provide a translational approach for these therapies, integrating macro- and microenvironment influences, systemic hormonal or immune responses, and exogenous interactions. Non-eye native cell graft protocols are constantly improving both in efficacy and safety, with the aim of being the most suitable candidate for corneal therapies in future routine practice. The aim of this work is to review these different aspects with a special focus on issues facing CEnC culture in vitro, and to highlight animal graft models adapted to screen the efficacy of these different protocols.
Collapse
Affiliation(s)
- Pierre Antoine Faye
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France.
| | - François Poumeaud
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Pauline Chazelas
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Mathilde Duchesne
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France; CHU de Limoges, Laboratoire de Neurologie, F-87000, Limoges, France; CHU de Limoges, Service d'Anatomie Pathologique, F-87000, Limoges, France
| | - Marion Rassat
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Federica Miressi
- Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Anne Sophie Lia
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France; CHU Limoges, UF de Bioinformatique, F-87000, Limoges France
| | - Franck Sturtz
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | | | - Frédéric Favreau
- CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France
| | - Yohan Benayoun
- Chénieux Ophtalmologie, Polyclinique de Limoges ELSAN, F-87000, Limoges, France
| |
Collapse
|
4
|
Liu Y, Wang J, Chen D, Kam WR, Sullivan DA. The Role of Hypoxia-Inducible Factor 1α in the Regulation of Human Meibomian Gland Epithelial Cells. Invest Ophthalmol Vis Sci 2020; 61:1. [PMID: 32150252 PMCID: PMC7401459 DOI: 10.1167/iovs.61.3.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose We recently discovered that a hypoxic environment is beneficial for meibomian gland (MG) function. The mechanisms underlying this effect are unknown, but we hypothesize that it is due to an increase in the levels of hypoxia-inducible factor 1α (HIF1α). In other tissues, HIF1α is the primary regulator of cellular responses to hypoxia, and HIF1α expression can be induced by multiple stimuli, including hypoxia and hypoxia-mimetic agents. The objective of this study was to test our hypothesis. Methods Human eyelid tissues were stained for HIF1α. Immortalized human MG epithelial cells (IHMGECs) were cultured for varying time periods under normoxic (21% O2) or hypoxic (1% O2) conditions, in the presence or absence of the hypoxia-mimetic agent roxadustat (Roxa). IHMGECs were then processed for the analysis of cell number, HIF1α expression, lipid-containing vesicles, neutral and polar lipid content, DNase II activity, and intracellular pH. Results Our results show that HIF1α protein is present in human MG acinar epithelial cells in vivo. Our findings also demonstrate that exposure to 1% O2 or to Roxa increases the expression of HIF1α, the number of lipid-containing vesicles, the content of neutral lipids, and the activity of DNase II and decreases the pH in IHMGECs in vitro. Conclusions Our data support our hypothesis that the beneficial effect of hypoxia on the MG is mediated through an increased expression of HIF1α.
Collapse
|
5
|
Feng J, Dai W, Mao Y, Wu L, Li J, Chen K, Yu Q, Kong R, Li S, Zhang J, Ji J, Wu J, Mo W, Xu X, Guo C. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res 2020; 39:24. [PMID: 32000827 PMCID: PMC6993409 DOI: 10.1186/s13046-020-1528-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common primary malignant tumor which usually progresses to an advanced stage because of late diagnosis. Sorafenib (Sora) is a first line medicine for advanced stage HCC; however, it has been faced with enormous resistance. Simvastatin (Sim) is a cholesterol-lowering drug and has been reported to inhibit tumor growth. The present study aims to determine whether Sora and Sim co-treatment can improve Sora resistance in HCC. METHODS The HCC cell line LM3 and an established Sora-resistant LM3 cell line (LM3-SR) were used to study the relationship between Sora resistance and aerobic glycolysis. Cell proliferation, apoptosis and glycolysis levels were analyzed by western blotting, flow cytometry analysis and biomedical tests. A xenograft model was also used to examine the effect of Sim in vivo. Detailed mechanistic studies were also undertaken by the use of activators and inhibitors, and lentivirus transfections. RESULTS Our results demonstrated that the resistance to Sora was associated with enhanced aerobic glycolysis levels. Furthermore, LM3-SR cells were more sensitive to Sim than LM3 cells, suggesting that combined treatment with both Sora and Sim could enhance the sensitivity of LM3-SR cells to Sora. This finding may be due to the suppression of the HIF-1α/PPAR-γ/PKM2 axis. CONCLUSIONS Simvastatin can inhibit the HIF-1α/PPAR-γ/PKM2 axis, by suppressing PKM2-mediated glycolysis, resulting in decreased proliferation and increased apoptosis in HCC cells, and re-sensitizing HCC cells to Sora.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China.
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China.
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
| | - Yuqing Mao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Rui Kong
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
- Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China
| | - Wenhui Mo
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, 200433, China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, 200433, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China.
| |
Collapse
|
6
|
Onochie OE, Onyejose AJ, Rich CB, Trinkaus-Randall V. The Role of Hypoxia in Corneal Extracellular Matrix Deposition and Cell Motility. Anat Rec (Hoboken) 2019; 303:1703-1716. [PMID: 30861330 DOI: 10.1002/ar.24110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/29/2018] [Accepted: 12/17/2018] [Indexed: 12/24/2022]
Abstract
The cornea is an excellent model tissue to study how cells adapt to periods of hypoxia as it is naturally exposed to diurnal fluxes in oxygen. It is avascular, transparent, and highly innervated. In certain pathologies, such as diabetes, limbal stem cell deficiency, or trauma, the cornea may be exposed to hypoxia for variable lengths of time. Due to its avascularity, the cornea requires atmospheric oxygen, and a reduction in oxygen availability can impair its physiology and function. We hypothesize that hypoxia alters membrane stiffness and the deposition of matrix proteins, leading to changes in cell migration, focal adhesion formation, and wound repair. Two systems-a 3D corneal organ culture model and polyacrylamide substrates of varying stiffness-were used to examine the response of corneal epithelium to normoxic and hypoxic environments. Exposure to hypoxia alters the deposition of the matrix proteins such as laminin and Type IV collagen. In addition, previous studies had shown a change in fibronectin after injury. Studies performed on matrix-coated acrylamide substrates ranging from 0.2 to 50 kPa revealed stiffness-dependent changes in cell morphology. The localization, number, and length of paxillin pY118- and vinculin pY1065-containing focal adhesions were different in wounded corneas and in human corneal epithelial cells incubated in hypoxic environments. Overall, these results demonstrate that low-oxygenated environments modify the composition of the extracellular matrix, basal lamina stiffness, and focal adhesion dynamics, leading to alterations in the function of the cornea. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Obianamma E Onochie
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Anwuli J Onyejose
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| | - Celeste B Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Vickery Trinkaus-Randall
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts.,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|