1
|
van Velthoven AJH, Utheim TP, Notara M, Bremond-Gignac D, Figueiredo FC, Skottman H, Aberdam D, Daniels JT, Ferrari G, Grupcheva C, Koppen C, Parekh M, Ritter T, Romano V, Ferrari S, Cursiefen C, Lagali N, LaPointe VLS, Dickman MM. Future directions in managing aniridia-associated keratopathy. Surv Ophthalmol 2023; 68:940-956. [PMID: 37146692 DOI: 10.1016/j.survophthal.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Congenital aniridia is a panocular disorder that is typically characterized by iris hypoplasia and aniridia-associated keratopathy (AAK). AAK results in the progressive loss of corneal transparency and thereby loss of vision. Currently, there is no approved therapy to delay or prevent its progression, and clinical management is challenging because of phenotypic variability and high risk of complications after interventions; however, new insights into the molecular pathogenesis of AAK may help improve its management. Here, we review the current understanding about the pathogenesis and management of AAK. We highlight the biological mechanisms involved in AAK development with the aim to develop future treatment options, including surgical, pharmacological, cell therapies, and gene therapies.
Collapse
Affiliation(s)
- Arianne J H van Velthoven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Tor P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Dominique Bremond-Gignac
- Ophthalmology Department, University Hospital Necker-Enfants Malades, APHP, Paris Cité University, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Paris Cité University, Paris, France
| | - Francisco C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne, UK; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Daniel Aberdam
- Centre de Recherche des Cordeliers, Sorbonne Paris Cité University, Paris, France
| | | | - Giulio Ferrari
- Cornea and Ocular Surface Unit, Eye Repair Lab, San Raffaele Hospital, Milan, Italy
| | - Christina Grupcheva
- Department of Ophthalmology and Visual Sciences, Medical University of Varna, Varna, Bulgaria
| | - Carina Koppen
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Mohit Parekh
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | - Thomas Ritter
- Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Brescia, Italy
| | | | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Vanessa L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Mor M Dickman
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
2
|
Behaegel J, Tassignon MJ, Lagali N, Consejo A, Koppen C, Ní Dhubhghaill S. Outcomes of Human Leukocyte Antigen-Matched Allogeneic Cultivated Limbal Epithelial Transplantation in Aniridia-Associated Keratopathy-A Single-Center Retrospective Analysis. Cornea 2022; 41:69-77. [PMID: 33928920 PMCID: PMC8647694 DOI: 10.1097/ico.0000000000002729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE To assess the efficacy and safety of human leukocyte antigen-matched allogeneic cultivated limbal epithelial stem cell grafts in the treatment of aniridia-associated keratopathy (AAK). METHODS Six eyes of 6 patients with severe AAK received an allogeneic stem cell graft between January 2010 and March 2017. Anatomical and functional results were assessed at 6 months, 1 year, 2 years, and the final follow-up visit available. Safety analysis was performed by considering all perioperative and postoperative adverse events and additional surgeries required during the follow-up period. RESULTS The mean follow-up was 53.6 months (range 24-104 months). In most patients (80%), there was an early improvement of the keratopathy postoperatively, which slowly regressed during longer follow-up. At the final follow-up, 4 of the eyes were graded as failure and 1 eye was graded as partial success. Grading the sixth eye was not possible because of an adverse event. None of the patients maintained a total anatomical success in the long-term. Only 1 patient maintained a modest improvement in best-corrected visual acuity from hand motion to counting fingers. Four serious adverse events were recorded in 2 patients. CONCLUSIONS Severe AAK remains a challenging condition to manage. Transplantation of allogenic ex vivo cultivated limbal stem cells may provide a temporary improvement in ocular surface stability, but anatomical and functional results are poor in the long-term. The eyes are prone to adverse events, and any surgical treatment should take this into consideration.
Collapse
Affiliation(s)
- Joséphine Behaegel
- Ophthalmology, Visual Optics and Visual Rehabilitation, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Marie-José Tassignon
- Ophthalmology, Visual Optics and Visual Rehabilitation, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linkoping University, Linköping, Sweden; and
| | - Alejandra Consejo
- Department of Applied Physics, University of Zaragoza, Zaragoza, Spain
| | - Carina Koppen
- Ophthalmology, Visual Optics and Visual Rehabilitation, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Sorcha Ní Dhubhghaill
- Ophthalmology, Visual Optics and Visual Rehabilitation, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|