1
|
Ouyang W, Yan D, Hu J, Liu Z. Multifaceted mitochondrial as a novel therapeutic target in dry eye: insights and interventions. Cell Death Discov 2024; 10:398. [PMID: 39242592 PMCID: PMC11379830 DOI: 10.1038/s41420-024-02159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Dry eye, recognized as the most prevalent ocular surface disorder, has risen to prominence as a significant public health issue, adversely impacting the quality of life for individuals across the globe. Despite decades of extensive research into the chronic inflammation that characterizes dry eye, the intricate mechanisms fueling this persistent inflammatory state remain incompletely understood. Among the various cellular components under investigation, mitochondria-essential for cellular energy production and homeostasis-have attracted increasing attention for their role in dry eye pathogenesis. This involvement points to mechanisms such as oxidative stress, apoptosis, and sustained inflammation, which are central to the progression of the disease. This review aims to provide a thorough exploration of mitochondrial dysfunction in dry eye, shedding light on the critical roles played by mitochondrial oxidative stress, apoptosis, and mitochondrial DNA damage. It delves into the mechanisms through which diverse pathogenic factors may trigger mitochondrial dysfunction, thereby contributing to the onset and exacerbation of dry eye. Furthermore, it lays the groundwork for an overview of current therapeutic strategies that specifically target mitochondrial dysfunction, underscoring their potential in managing this complex condition. By spotlighting this burgeoning area of research, our review seeks to catalyze the development of innovative drug discovery and therapeutic approaches. The ultimate goal is to unlock promising avenues for the future management of dry eye, potentially revolutionizing treatment paradigms and improving patient outcomes. Through this comprehensive examination, we endeavor to enrich the scientific community's understanding of dry eye and inspire novel interventions that address the underlying mitochondrial dysfunctions contributing to this widespread disorder.
Collapse
Affiliation(s)
- Weijie Ouyang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Yan
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
2
|
Li X, Chen C, Chen Y, Jiang K, Zhao X, Zhang F, Li Y. Oridonin ameliorates ocular surface inflammatory responses by inhibiting the NLRP3/caspase-1/GSDMD pyroptosis pathway in dry eye. Exp Eye Res 2024; 245:109955. [PMID: 38843984 DOI: 10.1016/j.exer.2024.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/26/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Chronic inflammation is one of the central drivers in the development of dry eye disease (DED), in which pyroptosis induced by the NLRP3/caspase-1/gasdermin D (GSDMD) pathway plays a key role. This pathway has become a major target for the treatment of a variety of inflammatory disorders. Oridonin (Ori) is a naturally occurring substance with anti-inflammatory properties obtained from Rabdosia rubescens. Whether Ori can exert an anti-inflammatory effect on DED, and its anti-inflammatory mechanism of action, are still unknown. This experiment is intended to investigate the impact of Ori on the hyperosmolarity-induced NLRP3/caspase-1/GSDMD pyroptosis pathway in immortalized human corneal epithelial (HCE-T) cells, as well as its efficacy and mechanism of action on ocular surface injury in DED mice. Our study showed that Ori could inhibit hyperosmotic-induced pyroptosis through the NLRP3/caspase-1/GSDMD pathway in HCE-T cells, and similarly, Ori inhibited the expression of this pathway in DED mice. Moreover, Ori was protective against hyperosmolarity-induced HCE-T cell damage. In addition, we found that the morphology and number of HCE-T cells were altered under culture conditions of various osmolarities. With increasing osmolarity, the proliferation, migration, and healing ability of HCE-T cells decreased significantly, and the expression of N-GSDMD was elevated. In a mouse model of DED, Ori application inhibited the expression of the NLRP3/caspase-1/GSDMD pyroptosis pathway, improved DED signs and injury, decreased corneal sodium fluorescein staining scores, and increased tear volume. Thus, our study suggests that Ori has potential applications for the treatment of DED, provides potential novel therapeutic approaches to treat DED, and provides a theoretical foundation for treating DED using Ori.
Collapse
Affiliation(s)
- Xiaojing Li
- Medical College, Graduate School of Medicine, Qingdao University, Qingdao, 266071, China; Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Chen Chen
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Ying Chen
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Kaiwen Jiang
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Xinmei Zhao
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Fenglan Zhang
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China.
| | - Yuanbin Li
- Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China.
| |
Collapse
|
3
|
An S, Anwar K, Ashraf M, Han KY, Djalilian AR. Chlorine-Induced Toxicity on Murine Cornea: Exploring the Potential Therapeutic Role of Antioxidants. Cells 2024; 13:458. [PMID: 38474422 PMCID: PMC10930774 DOI: 10.3390/cells13050458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Chlorine (Cl2) exposure poses a significant risk to ocular health, with the cornea being particularly susceptible to its corrosive effects. Antioxidants, known for their ability to neutralize reactive oxygen species (ROS) and alleviate oxidative stress, were explored as potential therapeutic agents to counteract chlorine-induced damage. In vitro experiments using human corneal epithelial cells showed decreased cell viability by chlorine-induced ROS production, which was reversed by antioxidant incubation. The mitochondrial membrane potential decreased due to both low and high doses of Cl2 exposure; however, it was recovered through antioxidants. The wound scratch assay showed that antioxidants mitigated impaired wound healing after Cl2 exposure. In vivo and ex vivo, after Cl2 exposure, increased corneal fluorescein staining indicates damaged corneal epithelial and stromal layers of mice cornea. Likewise, Cl2 exposure in human ex vivo corneas led to corneal injury characterized by epithelial fluorescein staining and epithelial erosion. However, antioxidants protected Cl2-induced damage. These results highlight the effects of Cl2 on corneal cells using in vitro, ex vivo, and in vivo models while also underscoring the potential of antioxidants, such as vitamin A, vitamin C, resveratrol, and melatonin, as protective agents against acute chlorine toxicity-induced corneal injury. Further investigation is needed to confirm the antioxidants' capacity to alleviate oxidative stress and enhance the corneal healing process.
Collapse
Affiliation(s)
- Seungwon An
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (K.-Y.H.)
- Clinical Stem Cell Laboratory, UI Blood & Marrow Transplant Program, University of Illinois Hospital and Health Sciences System, Chicago, IL 60612, USA
| | - Khandaker Anwar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (K.-Y.H.)
| | - Mohammadjavad Ashraf
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (K.-Y.H.)
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (K.-Y.H.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.A.); (M.A.); (K.-Y.H.)
| |
Collapse
|
4
|
Feng J, Zhang Y. The potential benefits of polyphenols for corneal diseases. Biomed Pharmacother 2023; 169:115862. [PMID: 37979379 DOI: 10.1016/j.biopha.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023] Open
Abstract
The cornea functions as the primary barrier of the ocular surface, regulating temperature and humidity while providing protection against oxidative stress, harmful stimuli and pathogenic microorganisms. Corneal diseases can affect the biomechanical and optical properties of the eye, resulting in visual impairment or even blindness. Due to their diverse origins and potent biological activities, plant secondary metabolites known as polyphenols offer potential advantages for treating corneal diseases owing to their anti-inflammatory, antioxidant, and antibacterial properties. Various polyphenols and their derivatives have demonstrated diverse mechanisms of action in vitro and in vivo, exhibiting efficacy against a range of corneal diseases including repair of tissue damage, treatment of keratitis, inhibition of neovascularization, alleviation of dry eye syndrome, among others. Therefore, this article presents a concise overview of corneal and related diseases, along with an update on the research progress of natural polyphenols in safeguarding corneal health. A more comprehensive understanding of natural polyphenols provides a novel perspective for secure treatment of corneal diseases.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
5
|
De Luca I, Di Cristo F, Conte R, Peluso G, Cerruti P, Calarco A. In-Situ Thermoresponsive Hydrogel Containing Resveratrol-Loaded Nanoparticles as a Localized Drug Delivery Platform for Dry Eye Disease. Antioxidants (Basel) 2023; 12:antiox12050993. [PMID: 37237859 DOI: 10.3390/antiox12050993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Dry eye disease (DED) is a dynamic and complex disease that can cause significant damage to the ocular surface and discomfort, compromising the patient's quality of life. Phytochemicals such as resveratrol have received increasing attention due to their ability to interfere with multiple pathways related to these diseases. However, the low bioavailability and the poor therapeutic response of resveratrol hinder its clinical applications. Cationic polymeric nanoparticles, in combination with in situ gelling polymers, could represent a promising strategy to prolong drug corneal residence time reducing the frequency of administration and increasing the therapeutic response. Eyedrop formulations, based on acetylated polyethyleneimine-modified polylactic-co-glicolyc acid- (PLGA-PEI) nanoparticles loaded with resveratrol (RSV-NPs) were dispersed into poloxamer 407 hydrogel and characterized in terms of pH, gelation time, rheological properties, in vitro drugs release, and biocompatibility. Moreover, the antioxidant and anti-inflammatory effects of RSV were assessed in vitro by mimicking a DED condition through the exposition of epithelial corneal cells to a hyperosmotic state. This formulation exhibited sustained release of RSV for up to 3 days, exerting potent antioxidant and anti-inflammatory effects on corneal epithelial cells. In addition, RSV reversed the mitochondrial dysfunction mediated by high osmotic pressure, leading to upregulated sirtuin-1 (SIRT1) expression, an essential regulator of mitochondrial function. These results suggest the potential of eyedrop formulation as a platform to overcome the rapid clearance of current solutions for treating various inflammation- and oxidative stress-related diseases such as DED.
Collapse
Affiliation(s)
- Ilenia De Luca
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | | | - Raffaele Conte
- Elleva Pharma s.r.l., Via P. Castellino 111, 80131 Napoli, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
- Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
6
|
Shen J, Liang Y, Bi Z, Yin X, Chen C, Zhao X, Liu S, Li Y. Cyclosporin A improves the hyperosmotic response in an experimental dry eye model by inhibiting the HMGB1/TLR4/NF-κB signaling pathway. Exp Eye Res 2023; 229:109418. [PMID: 36806672 DOI: 10.1016/j.exer.2023.109418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/29/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Hyperosmolarity is closely related to dry eye disease (DED), which induces corneal epithelial cell structure and dysfunction leading to ocular surface inflammation. Cyclosporine A (CSA) is a cyclopeptide consisting of 11 deduced amino acids. It has an immunosuppressive effect and shows a vital function in inhibiting the inflammatory response. The mechanism of CSA in DED is still not entirely clear. This experiment aimed to investigate the possible mechanism of CSA in the hyperosmotic DED model. This study found that CSA can inhibit the transcript levels of DED high mobility group protein 1 (HMGB1), Toll-like receptor 4 (TLR4) and nuclear transcription factor κB (NF-κB) in signaling pathways. In addition, the study also found that 550 mOsm/L can induce the formation of DED models in vivo or in vitro. Furthermore, different concentrations of CSA have different effects on the expression of HMGB1 in human corneal epithelial cells under hyperosmotic stimulation, and high concentrations of CSA may increase the expression of HMGB1. In addition, CSA effectively reduced the corneal fluorescence staining score of the DE group and increased the tear volume of mice. Therefore, this experimental investigation might supply new evidence for the mechanism of CSA in DED, provide a potential new therapy for treating DED, and provide a theoretical basis for CSA treatment of DED.
Collapse
Affiliation(s)
- Jiachao Shen
- Department of Ophthalmology, Binzhou Medical College, Yantai, 264000, China; Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Yan Liang
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Zhaojing Bi
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Xin Yin
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Chen Chen
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Xinmei Zhao
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Shujun Liu
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China.
| | - Yuanbin Li
- Department of Ophthalmology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China.
| |
Collapse
|
7
|
Trotta MC, Herman H, Balta C, Rosu M, Ciceu A, Mladin B, Gesualdo C, Lepre CC, Russo M, Petrillo F, Pieretti G, Simonelli F, Rossi S, D’Amico M, Hermenean A. Oral Administration of Vitamin D3 Prevents Corneal Damage in a Knock-Out Mouse Model of Sjögren's Syndrome. Biomedicines 2023; 11:biomedicines11020616. [PMID: 36831152 PMCID: PMC9953695 DOI: 10.3390/biomedicines11020616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Vitamin D deficiency has been associated with dry eye development during Sjögren's syndrome (SS). Here, we investigated whether repeated oral vitamin D3 supplementation could prevent the corneal epithelium damage in an SS mouse model. METHODS 30 female mouse knock-out for the thrombospondin 1 gene were randomized (six per group) in untreated mice euthanized at 6 weeks as negative control (C-) or at 12 weeks as the positive control for dry eye (C+). Other mice were sacrificed after 6 weeks of oral vitamin D3 supplementation in the drinking water (1000, 8000, and 20,000 IU/kg/week, respectively). RESULTS The C+ mice showed alterations in their corneal epithelial morphologies and thicknesses (p < 0.01 vs. C-), while the mice receiving 8000 (M) and 20,000 (H) IU/kg/week of vitamin D3 showed preservation of the corneal epithelium morphology and thickness (p < 0.01 vs. C+). Moreover, while the C+ mice exhibited high levels and activity of corneal tumor necrosis factor alpha converting enzyme (TACE), neovascularization and fibrosis markers; these were all reduced in the M and H mice. CONCLUSIONS Oral vitamin D3 supplementation appeared to counteract the negative effect of TACE on corneal epithelium in a mouse model of SS-associated dry eye.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| | - Marcel Rosu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 6, 80138 Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Marina Russo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Francesco Petrillo
- PhD Course in Translational Medicine, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gorizio Pieretti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 6, 80138 Naples, Italy
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 6, 80138 Naples, Italy
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio 6, 80138 Naples, Italy
- Correspondence:
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli 16, 80138 Naples, Italy
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Revolutiei Av., 310414 Arad, Romania
| |
Collapse
|
8
|
Hegarty DM, Carroll JR, Nguyen D, Halls VS, Robbins DI, Price TJ, Dussor G, Aicher SA. Resveratrol increases tear production and ocular pain after corneal abrasion in male, but not female, rats using a photorefractive keratectomy model. Exp Eye Res 2022; 225:109281. [PMID: 36265575 DOI: 10.1016/j.exer.2022.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/23/2022] [Accepted: 10/13/2022] [Indexed: 12/29/2022]
Abstract
Photorefractive keratectomy (PRK) is an alternative to LASIK and can cause intense acute pain that is often not relieved by standard treatments. To assess potential therapeutics for this type of acute pain, appropriate preclinical models are needed. We describe a preclinical corneal abrasion rat model that simulates the initial stages of PRK surgery and demonstrates similar pain and tear dysfunction as seen clinically. We used both behavioral and homeostatic assays to determine the therapeutic potential of resveratrol on pain and tear production. Studies were conducted in male and female Sprague-Dawley rats. Heptanol was applied to one eye and the superficial corneal epithelium was removed, mimicking the abrasion used in PRK. Spontaneous pain was assessed with orbital tightening (OT) scores for 7 days. Topical resveratrol increased OT scores sex-specifically in abraded males, but not females, at 72 h and 1 week after abrasion. Resveratrol increased tear production in abraded males, with no effect in abraded females. There was no correlation between OT score at 1 week and tear production measurements, demonstrating no relationship between spontaneous ocular pain and tear dysfunction in this model. These findings demonstrate the usefulness of our corneal abrasion preclinical PRK model for the assessment of ocular pain therapeutics and indicate that topical resveratrol may not be useful for managing PRK-induced pain.
Collapse
Affiliation(s)
- Deborah M Hegarty
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - James R Carroll
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Dennis Nguyen
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Victoria S Halls
- Medicinal Chemistry Core, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | - Theodore J Price
- Ted's Brain Science, Inc., Dallas, TX, 75252, USA; School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Gregory Dussor
- Ted's Brain Science, Inc., Dallas, TX, 75252, USA; School of Behavioral and Brain Sciences, Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
9
|
The Role of Resveratrol in Eye Diseases—A Review of the Literature. Nutrients 2022; 14:nu14142974. [PMID: 35889930 PMCID: PMC9317487 DOI: 10.3390/nu14142974] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Resveratrol (3,5,4′-trans-trihydroxystilbene) is a polyphenolic phytoalexin belonging to the stilbene family. It is commonly found in grape skins and seeds, as well as other plant-based foods. Oxidative stress and inflammation play a key role in the initiation and progression of age-related eye disorders (glaucoma, cataracts, diabetic retinopathy, and macular degeneration) that lead to a progressive loss of vision and blindness. Even though the way resveratrol affects the human body and the course of many diseases is still the subject of ongoing scientific research, it has been shown that the broad spectrum of anti-inflammatory and neuroprotective properties of resveratrol has a beneficial effect on eye tissues. In our research, we decided to analyze the current scientific literature on resveratrol, its possible mechanisms of action, and its therapeutic application in order to assess its effectiveness in eye diseases.
Collapse
|
10
|
Ameliorative Potential of Resveratrol in Dry Eye Disease by Restoring Mitochondrial Function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1013444. [PMID: 35664941 PMCID: PMC9162831 DOI: 10.1155/2022/1013444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Methods The mitochondrial dysfunction of HCE-2 human corneal epithelial cells was induced by high osmotic pressure exposure and treated with resveratrol (50 μM). Western blotting was used to detect the expression of the antioxidant proteins SOD2, GPx, and SIRT1, and flow cytometry was used to detect cell apoptosis and ROS production. The DED mouse model was induced by 0.2% benzalkonium chloride (BAC) and treated with resveratrol. The tear yield was measured by the phenol cotton thread test, the density of cup cells in the conjunctiva was measured by periodic acid-Schiff (PAS) staining, and the expression levels of SIRT1, GPx, and SOD2 in lacrimal glands were detected by Western blotting. Results In hypertonic conditions, the apoptosis of HCE-2 cells increased, the expression of the antioxidant proteins SOD2 and GPx decreased, ROS production increased, and the expression of SIRT1 protein, an essential regulator of mitochondrial function, was downregulated. Treatment with resveratrol reversed the mitochondrial dysfunction mediated by high osmotic pressure. In the DED mouse model, resveratrol treatment promoted tear production and goblet cell number in DED mice, decreased corneal fluorescein staining, upregulated SIRT1 expression, and induced SOD2 and GPx expression in DED mice. Conclusion Resveratrol alleviates mitochondrial dysfunction by promoting SIRT1 expression, thus reducing ocular surface injury in mice with dry eye. This study suggests a new path against DED.
Collapse
|
11
|
Abstract
Dry eye disease (DED) is a major public health problem worldwide that seriously impairs the quality of life, reduces work productivity, and poses significant economic burden. In DED, tear film instability or hyperosmolarity activates a self-perpetuating vicious cycle that may aggravate ocular surface inflammation and damage. Thus, treatment approaches should focus on interrupting this cycle and ameliorating inflammation. In addition to anti-inflammatory medications, such as corticosteroids, cyclosporine, and lifitegrast, nutrients with anti-inflammatory and anti-oxidative properties may also be effective for the treatment of DED. Evidence indicates that vitamin deficiencies may be associated with an increased risk of DED and that vitamin supplementation can be an effective treatment for DED. In the present review, we introduce the results of clinical and experimental studies on the association between vitamin deficiencies and DED. The potential efficacy of systemic and topical supplementation in the treatment of DED is also discussed.
Collapse
|
12
|
Anti-Inflammatory Effects of Resveratrol on Human Retinal Pigment Cells and a Myopia Animal Model. Curr Issues Mol Biol 2021; 43:716-727. [PMID: 34287272 PMCID: PMC8929083 DOI: 10.3390/cimb43020052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Resveratrol is a key component of red wine and other grape products. Recent studies have characterized resveratrol as a polyphenol, and shown its beneficial effects on cancer, metabolism, and infection. This study aimed to obtain insights into the biological effects of resveratrol on myopia. To this end, we examined its anti-inflammatory influence on human retinal pigment epithelium cells and in a monocular form deprivation (MFD)-induced animal model of myopia. In MFD-induced myopia, resveratrol increased collagen I level and reduced the expression levels of matrix metalloproteinase (MMP)2, transforming growth factor (TGF)-β, and nuclear factor (NF)-κB expression levels. It also suppressed the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. Resveratrol exhibited no significant cytotoxicity in ARPE-19 cells. Downregulation of inflammatory cytokine production, and inhibition of AKT, c-Raf, Stat3, and NFκB phosphorylation were observed in ARPE-19 cells that were treated with resveratrol. In conclusion, the findings suggest that resveratrol inhibits inflammatory effects by blocking the relevant signaling pathways, to ameliorate myopia development. This may make it a natural candidate for drug development for myopia.
Collapse
|
13
|
Fogagnolo P, De Cilla’ S, Alkabes M, Sabella P, Rossetti L. A Review of Topical and Systemic Vitamin Supplementation in Ocular Surface Diseases. Nutrients 2021; 13:nu13061998. [PMID: 34200595 PMCID: PMC8228525 DOI: 10.3390/nu13061998] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
In the homeostasis of the ocular surface, vitamins play a critical role in regulating inflammatory responses and promoting cell differentiation, development and correct function. Systemic vitamin supplementation has been available for many decades; in recent years, thanks to pharmacological advancements, topical vitamin delivery has also become available in an attempt to better treat ocular surface disease (OSD) and dry eye disease (DED). In this paper, we reviewed the current evidence on the role of vitamin supplementation in OSD and DED. We originally searched the PubMed archive, inspected the references and restricted the search to pertinent papers. The body of evidence was evaluated using the amelioration of both signs and symptoms as the outcome, when available. We found that in patients with vitamin deficiency, systemic supplementation of Vitamin A is effective in treating OSD, reducing both DED signs and symptoms. Additionally, systemic supplementation of vitamin D is useful in reducing DED symptoms and increasing tear volume. Vitamin A is also effective in reducing DED signs and symptoms when administered locally. The efficacy of supplementation with other vitamins is still not fully proven. In conclusion, the inclusion of vitamins into the treatment strategies for OSD and DED allows for better treatment customization and better outcomes in these patients.
Collapse
Affiliation(s)
- Paolo Fogagnolo
- Ophthalmology Unit, Department of Health Sciences, San Paolo Hospital, Università degli Studi di Milano, 20142 Milan, Italy; (P.S.); (L.R.)
- Correspondence:
| | - Stefano De Cilla’
- Ophthalmology Unit, Ospedale Maggiore della Carita, 28100 Novara, Italy; (S.D.C.); (M.A.)
| | - Micol Alkabes
- Ophthalmology Unit, Ospedale Maggiore della Carita, 28100 Novara, Italy; (S.D.C.); (M.A.)
| | - Pierfilippo Sabella
- Ophthalmology Unit, Department of Health Sciences, San Paolo Hospital, Università degli Studi di Milano, 20142 Milan, Italy; (P.S.); (L.R.)
| | - Luca Rossetti
- Ophthalmology Unit, Department of Health Sciences, San Paolo Hospital, Università degli Studi di Milano, 20142 Milan, Italy; (P.S.); (L.R.)
| |
Collapse
|
14
|
Favero G, Moretti E, Krajčíková K, Tomečková V, Rezzani R. Evidence of Polyphenols Efficacy against Dry Eye Disease. Antioxidants (Basel) 2021; 10:antiox10020190. [PMID: 33525721 PMCID: PMC7911148 DOI: 10.3390/antiox10020190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Dry eye disease is a multifactorial pathology compromising the quality of life of patients, resulting in significant damage of the ocular surface and discomfort. The current therapeutical strategies are not able to definitively resolve the underlying causes and stop the symptoms. Polyphenols are promising natural molecules that are receiving increasing attention for their activity/effects in counteracting the main pathologic mechanisms of dry eye disease and reducing its symptoms. In the present review, a deep literature search focusing on the main polyphenols tested against dry eye disease was conducted, analyzing related in vitro, in vivo, and clinical studies to provide a comprehensive and current review on the state of the art. Polyphenols present multiple effects against dry eye diseases-related ocular surface injury. In particular, the observed beneficial effects of polyphenols on corneal cells are the reduction of the pathological processes of inflammation, oxidative stress, and apoptosis and modulation of the tear film. Due to numerous studies reporting that polyphenols are effective and safe for treating the pathological mechanisms of this ocular surface disease, we believe that future studies should confirm and extend the evidence of polyphenols efficacy in clinical practice against dry eye disease and help to develop new ophthalmic drug(s).
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
| | - Enrico Moretti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
| | - Kristína Krajčíková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 12 Košice, Slovakia; (K.K.); (V.T.)
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 12 Košice, Slovakia; (K.K.); (V.T.)
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Correspondence:
| |
Collapse
|