1
|
Nascimento H, Martins TMM, Moreira R, Barbieri G, Pires P, Carvalho LN, Rosa LR, Almeida A, Araujo MS, Pessuti CL, Ferrer H, Pereira Gomes JÁ, Belfort R, Raia S. Current Scenario and Future Perspectives of Porcine Corneal Xenotransplantation. Cornea 2025; 44:387-404. [PMID: 39413247 DOI: 10.1097/ico.0000000000003723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/25/2024] [Indexed: 10/18/2024]
Abstract
ABSTRACT Corneal diseases represent a significant cause of blindness worldwide, with corneal transplantation being an effective treatment to prevent vision loss. Despite substantial advances in transplantation techniques, the demand for donor corneas exceeds the available supply, particularly in developing countries. Cornea xenotransplantation has emerged as a promising strategy to address the worldwide scarcity, notably using porcine corneas. In addition to the inherent immune privilege of the cornea, the low cost of porcine breeding and the anatomical and physiological similarities between humans and pigs have made porcine corneas a viable alternative. Nonetheless, ethical concerns, specifically the risk of xenozoonotic transmission and the necessity for stringent biosafety measures, remain significant obstacles. Moreover, the success of xenotransplantation is compromised by innate and adaptive immune responses, which requires meticulous consideration and further studies. Despite these challenges, recent breakthroughs have further contributed to reducing immunogenicity while preserving the corneal architecture. Advances in genetic engineering, such as the use of CRISPR-Cas9 to eliminate critical porcine antigens, have shown promise for mitigating immune reactions. Additionally, new immunosuppressive protocols, such as have techniques like decellularization and the use of porcine-derived acellular matrices, have greatly increased graft survival in preclinical models. Future research must focus on refining immunomodulatory strategies and improving graft preparation techniques to ensure the long-term survival and safety of porcine corneal xenotransplantation in clinical trials in humans.
Collapse
Affiliation(s)
- Heloisa Nascimento
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | - Thaís M M Martins
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
- Federal University of Viçosa (UFV), Viçosa, Brazil; and
| | | | - Gabriel Barbieri
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Pedro Pires
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | - Lucimeire N Carvalho
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Larissa R Rosa
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Augusto Almeida
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | | | - Carmen Luz Pessuti
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Henrique Ferrer
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
- Federal University of Viçosa (UFV), Viçosa, Brazil; and
- Vision Institute (IPEPO), Sao Paulo, Brazil
| | - Silvano Raia
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
2
|
Zhao L, Shi Z, Qi X, Wang J, Yu M, Dong M, Wang F, Zhou Q, Wang T, Shi W. Corneal stromal structure replicating humanized hydrogel patch for sutureless repair of deep anterior-corneal defect. Biomaterials 2025; 313:122754. [PMID: 39197237 DOI: 10.1016/j.biomaterials.2024.122754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 09/01/2024]
Abstract
A critical shortage of donor corneas exists worldwide. Hydrogel patches with a biological architecture and functions that simulate those of native corneas have garnered considerable attention. This study introduces a stromal structure replicating corneal patch (SRCP) composed of a decellularized cornea-templated nanotubular skeleton, recombinant human collagen, and methacrylated gelatin, exhibiting a similar ultrastructure and transmittance (above 80 %) to natural cornea. The SRCP is superior to the conventional recombinant human collagen patch in terms of biomechanical properties and resistance to enzymatic degradation. Additionally, SRCP promotes corneal epithelial and stromal cell migration while preventing the trans-differentiation of stromal cells into myofibroblasts. When applied to an ocular surface (37 °C), SRCP releases methacrylated gelatin, which robustly binds SRCP to the corneal stroma after activation by 405 nm light. Compared to gelatin-based photocurable hydrogel, the SRCP better supports the restoration of normal corneal curvature and withstands deformation under an elevated intraocular pressure (100 mmHg). In an in vivo deep anterior-corneal defect model, SRCP facilitated epithelial healing and vision recovery within 2 weeks, maintained graft structural stability, and inhibited stromal scarring at 4 weeks post-operation. The ideal performance of the SRCP makes it a promising humanized corneal equivalent for sutureless clinical applications.
Collapse
Affiliation(s)
- Long Zhao
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Zhen Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Xia Qi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Jingting Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Mengmeng Yu
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China
| | - Muchen Dong
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China
| | - Fuyan Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Ting Wang
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China.
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China; Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China.
| |
Collapse
|
3
|
Li Q, Zhang F, Zhao H. Construction and biocompatibility of penetrating corneal transplant substitute with cross-linked acellular porcine cornea and biopolymer polyurethane. BIOMATERIALS ADVANCES 2025; 170:214201. [PMID: 39904016 DOI: 10.1016/j.bioadv.2025.214201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/20/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
In this study, acellular porcine cornea (APC) was composited with biopolymer polyurethane (PU), in which Polyethylene glycol (PEG) served as porogen, to fabricate a breathable and impermeable barrier and maintain the transparency of APC. To improve the effect of decellularization on the collagen fibrolamella of the APC, structural regularity and stability as well as postoperative corneal edema and melting, crosslinking was taken as an effective way to improve the mechanical properties and anti-enzymatic hydrolysis of APC. Chemical cross-linking in different agents, crosslink concentrations, and reaction times were conducted. The transparency, elastic modulus, oxygen permeability, crosslinking degree, and expansion thickness were examined. Furthermore, the immunogenicity, cytocompatibility, and histocompatibility of the cross-linked APC-PU composite under the optimal crosslinking parameters (GP-0.2 %-3.0, EDC-1.0 %-1.0, GD-0.8 %-0.3) were analyzed. The results showed that the GD-0.8 %-0.3 samples demonstrated cytotoxicity and significant neovascularization during subcutaneous experiments. Moreover, a proliferation membrane was formed on the PU surface in the orthotopic transplantation, suggesting immune rejection. The GP-0.2 %-3.0 group exhibited pronounced edema and delamination in the 4th week, indicating inadequate permeability and incomplete fiber cross-linking. However, the EDC-1.0 %-1.0 group promoted cell adhesion and proliferation, while maintaining graft integrity without degradation upon subcutaneous implantation. No corneal swelling or degradation was observed within 4 weeks post-transplantation. Cross-linking of EDC/NHS is an effective method for fabricating the ideal and functional APC-PU composite for penetrating keratoplasty.
Collapse
Affiliation(s)
- Qing Li
- School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Fan Zhang
- Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Haibin Zhao
- School of Materials Science and Engineering, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Zhao L, Shi Z, Zhang X, Wang J, Yang S, Wang F, Li T, Zhou Q, Wang T, Shi W. Artificial Cornea Substitute Based on Hydrogel Skeletons with Natural Stromal Hierarchical Structure and Extracellular Matrix for Sutureless Transplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411540. [PMID: 39853921 DOI: 10.1002/advs.202411540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/23/2024] [Indexed: 01/26/2025]
Abstract
Corneal substitutes with structural and compositional characteristics resembling those of natural corneas have attracted considerable attention. However, biomimicking the complex hierarchical organization of corneal stroma is challenging. In this study, humanized corneal stroma-like adhesive patches (HCSPs) are prepared through a multi-step process. First, polyethylene glycol diacrylate is cast and cured within decellularized porcine cornea (DPC) templates. The DPCs are then enzymatically digested to obtain hydrogel skeletons, which are finally integrated with human corneal extracellular matrix and methacrylate gelatin. HCSPs replicate the ultrastructure, protein components, and optical properties of human corneas and exhibit improved anti-swelling and anti-degradation capabilities compared with conventional DPCs and recombinant human collagen patches. HCSPs can deliver methacrylate gelatin at the ocular surface temperature (37 °C) and achieve stable adhesion to the corneal stroma upon 405 nm light irradiation. Furthermore, HCSPs promote the survival and migration of corneal epithelial and stromal cells while preserving their phenotypes. In rabbit models of lamellar keratoplasty and microperforation repair, HCSPs accelerate epithelial healing, minimize suture-associated complications, and maintain structural stability. These findings suggest that HCSPs are promising donor corneal substitutes for clinical applications.
Collapse
Affiliation(s)
- Long Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Zhen Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Xiaoyu Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Jingting Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Shang Yang
- Binzhou Medical University, Binzhou, 264003, China
| | - Fuyan Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Tan Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| | - Ting Wang
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China
| |
Collapse
|
5
|
Chen Y, Chen Y, Wang C, Gao R, Zhang K. Different Thicknesses of Acellular Porcine Corneal Stroma on Prognosis of Fungal Corneal Ulcers Treated by Lamellar Keratoplasty: A 5-Year Retrospective Study. Cornea 2025; 44:31-38. [PMID: 38967525 DOI: 10.1097/ico.0000000000003616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
PURPOSE To compare the prognosis and efficacy of acellular porcine corneal stroma (APCS) with different thicknesses for the treatment of fungal corneal ulcers by lamellar keratoplasty (LKP). METHODS A total of 52 patients who underwent LKP with APCS for the treatment of fungal corneal ulcers were included in this retrospective study. Patients were divided into 2 groups according to the different thicknesses of APCS (0.30 ± 0.05 mm, L2 group, n = 20; 0.40 ± 0.05 mm, L3 group, n = 32). Observation indicators included best corrected visual acuity, graft transparency, corneal neovascularization, ocular irritation symptoms, corneal epithelial healing time, graft survival, central corneal thickness at 1 year after surgery, and postoperative complications. RESULTS Compared with the L3 group, the L2 group had better postoperative best corrected visual acuity and graft transparency ( P < 0.001), less corneal neovascularization ( P < 0.001), and lower incidence of complications ( P < 0.05). There were significant differences in ocular irritation symptoms between the 2 groups ( P < 0.05) at 3 and 6 months postoperatively, which might be related to the higher recurrence rate and graft rejection rate in the L3 group. The comparison of postoperative epithelial healing time also showed significant differences in 2 groups ( P < 0.01). The 1-year survival rate was up to 63.5% in both groups, with no significant difference ( P < 0.05). However, the risk of transplantation was less in the L2 group. Both APCS thicknesses could provide adequate central corneal thickness at 1 year after surgery ( P > 0.05). CONCLUSIONS APCS was safe and effective in the treatment of fungal corneal ulcers by LKP. Thinner grafts should be preferred for LKP for fungal corneal ulcers to reduce the risk of grafting.
Collapse
Affiliation(s)
- Yingxin Chen
- Department of Ophthalmology, General Hospital of the Northern Theater Command of the Chinese People's Liberation Army, Shenyang, Liaoning Province, China
| | | | | | | | | |
Collapse
|
6
|
Zhao L, Shi Z, Wang J, Dou S, Sun X, Yang S, Wang H, Zhou Q, Wang T, Shi W. Natural Extracellular Matrix Scaffold-Based Hydrogel Corneal Patch with Temperature and Light-Responsiveness for Penetrating Keratoplasty and Sutureless Stromal Defect Repair. Adv Healthc Mater 2024:e2402567. [PMID: 39558795 DOI: 10.1002/adhm.202402567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Corneal transplantation remains the gold standard for treating corneal blindness; however, it is hampered globally by donor shortages and the complexity of suture-dependent procedures. Tissue-engineered corneas have demonstrated potential as corneal equivalents. Nevertheless, the development of adhesive corneal patches and full-thickness corneal substitutes remains challenging. In this study, a multifunctional hydrogel corneal patch (MHCP) is constructed by integrating a dual-crosslinked hybrid hydrogel with temperature and light responsiveness with a natural extracellular matrix scaffold. When applied to the ocular surface, MHCP spontaneously releases adhesives at body temperature and forms a stable adhesion with the recipient cornea through photocuring. In addition to its inherent mechanical, optical, and ultrastructural characteristics, which are similar to those of the natural stroma, MHCP demonstrates excellent suture resistance, anti-swelling, and anti-degradation properties after curing. MHCP promotes the proliferation and migration of corneal epithelial cells in vitro and maintains the phenotype of corneal stromal cells. In vivo, MHCP maintains graft hydration and restores corneal structural integrity and transparency during penetrating keratoplasty of various sizes and sutureless lamellar keratoplasty. Collectively, given the advantages of native stroma-like characteristics, operation-facilitating multiple functions, and convenient preparation, MHCP is a promising corneal substitute for clinical applications.
Collapse
Affiliation(s)
- Long Zhao
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Zhen Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Jingting Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Shengqian Dou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Xiuli Sun
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Shang Yang
- Binzhou Medical University, Binzhou, 264003, China
| | - Hongwei Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| | - Ting Wang
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, 250021, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, 266071, China
| |
Collapse
|
7
|
Cui Y, Liu W, Zhao S, Zhao Y, Dai J. Advances in Microgravity Directed Tissue Engineering. Adv Healthc Mater 2023; 12:e2202768. [PMID: 36893386 DOI: 10.1002/adhm.202202768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Indexed: 03/11/2023]
Abstract
Tissue engineering aims to generate functional biological substitutes to repair, sustain, improve, or replace tissue function affected by disease. With the rapid development of space science, the application of simulated microgravity has become an active topic in the field of tissue engineering. There is a growing body of evidence demonstrating that microgravity offers excellent advantages for tissue engineering by modulating cellular morphology, metabolism, secretion, proliferation, and stem cell differentiation. To date, there have been many achievements in constructing bioartificial spheroids, organoids, or tissue analogs with or without scaffolds in vitro under simulated microgravity conditions. Herein, the current status, recent advances, challenges, and prospects of microgravity related to tissue engineering are reviewed. Current simulated-microgravity devices and cutting-edge advances of microgravity for biomaterials-dependent or biomaterials-independent tissue engineering to offer a reference for guiding further exploration of simulated microgravity strategies to produce engineered tissues are summarized and discussed.
Collapse
Affiliation(s)
- Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China
| | - Weiyuan Liu
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Shuaijing Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yannan Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jianwu Dai
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| |
Collapse
|
8
|
Zhang Y, Hu Z, Qu J, Xie H, Zhao J, Fan T, Liu X, Zhang M. Tissue-Engineered Corneal Endothelial Sheets Using Ultrathin Acellular Porcine Corneal Stroma Substrates for Endothelial Keratoplasty. ACS Biomater Sci Eng 2022; 8:1301-1311. [PMID: 35229601 DOI: 10.1021/acsbiomaterials.2c00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tissue-engineered cornea endothelial sheets (TECES), created using a biocompatible thin and transparent carrier with corneal endothelial cells, could alleviate the shortage of donor corneas and provide abundant functional endothelial cells. In our previous clinical trials, the effectiveness and safety of the acellular porcine corneal stroma (APCS) applied in lamellar keratoplasty have been confirmed. In this study, we optimized the method to cut APCS into multiple 20 μm ultrathin lamellae by a cryostat microtome and investigated the feasibility of TECES by seeding rabbit corneal endothelial cells (RCECs) on ultrathin APCS. Cell adhesion, proliferation, and functional gene expression of RCECs on tissue-culture plastic and APCS of different thicknesses were compared. The results indicated that ultrathin lamellae were superior in increasing cell viability and maintaining cell functions. Analyzing with histology, electron microscopy, and immunofluorescence, we found that RCECs cultured on 20 μm ultrathin APCS for 5 days grew into a confluent monolayer with a density of 3726 ± 223 cells/mm2 and expressed functional biomarkers Na+/K+-ATPase and zonula occludens. After 14 days, RCECs formed an early stage of Descemet's membrane-like structure by synthesizing collagen IV and laminin. Human corneal endothelial cells were also used to further validate the supportive effect of ultrathin APCS on cells. The resulting constructs were flexible and tough enough to implant into rabbits' anterior chambers through small incisions. TECES adhered to the posterior corneal stroma, and the thickness of cornea gradually reduced to normal after grafting. These results indicate that the ultrathin APCS can serve as a tissue engineering carrier and might be a suitable alternative for endothelial cells expansion in endothelial keratoplasty.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhixin Hu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingyu Qu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huatao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Zhao
- Key Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Tingjun Fan
- Key Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Xin Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingchang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|