1
|
Navel V, Sapin V, Henrioux F, Blanchon L, Labbé A, Chiambaretta F, Baudouin C, Dutheil F. Oxidative and antioxidative stress markers in dry eye disease: A systematic review and meta-analysis. Acta Ophthalmol 2022; 100:45-57. [PMID: 33938134 DOI: 10.1111/aos.14892] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To conduct a systematic review and meta-analysis on the levels of oxidative stress markers and antioxidants in dry eye disease (DED) compared with healthy subject. METHOD The PubMed, Cochrane Library, Embase, Science Direct and Google Scholar databases were searched on 10 January 2021 for studies reporting oxidative and antioxidative stress markers in DED and healthy controls. Main meta-analysis was stratified by type of biomarkers, type of samples (tears, conjunctival cells or biopsies), Sjögren's syndrome (SS) (patients with or without SS) and by geographical zones (Asia or Europe). RESULTS We included nine articles, for a total of 333 patients (628 eye samples) with DED and 165 healthy controls (451 eye samples). There is an overall increase in oxidative stress markers in DED compared with healthy controls (standard mean deviation = 2.39, 95% confidence interval 1.85-2.94), with a significant increase in lipid peroxide (1.90, 0.69-3.11), myeloperoxidase (2.17, 1.06-3.28), nitric oxide synthase 3 (2.52, 0.95-4.08), xanthine oxidase/oxidoreductase (2.41, 1.40-5.43), 4-hydroxy-2-nonenal (4HNE) (4.75, 1.67-7.84), malondialdehyde (3.00, 2.55-3.45) and reactive oxygen species (1.31, 0.94-1.68). Oxidative stress markers were higher in tears, conjunctival cells and conjunctival biopsies of DED than controls. Even if small number of studies were included for antioxidants, catalase seemed to be decreased in DED compared with healthy controls (-2.17, -3.00 to -1.34), with an increase of antioxidants in tears of DED patients without SS (1.13, 0.76-1.49). CONCLUSION Oxidative stress markers, and probably antioxidants, were dysregulated in DED, establishing a local oxidative environment in tears, conjunctival cells and tissues.
Collapse
Affiliation(s)
- Valentin Navel
- University Hospital of Clermont‐Ferrand CHU Clermont‐Ferrand, Ophthalmology Clermont‐Ferrand France
- Université Clermont Auvergne CNRS UMR 6293 INSERM U1103 Genetic Reproduction and Development Laboratory (GReD) Translational Approach to Epithelial Injury and Repair Team Clermont‐Ferrand France
| | - Vincent Sapin
- Université Clermont Auvergne CNRS UMR 6293 INSERM U1103 Genetic Reproduction and Development Laboratory (GReD) Translational Approach to Epithelial Injury and Repair Team Clermont‐Ferrand France
- University Hospital of Clermont‐Ferrand CHU Clermont‐Ferrand, Biochemistry and Molecular Genetics Clermont‐Ferrand France
| | - Fanny Henrioux
- Université Clermont Auvergne CNRS UMR 6293 INSERM U1103 Genetic Reproduction and Development Laboratory (GReD) Translational Approach to Epithelial Injury and Repair Team Clermont‐Ferrand France
| | - Loïc Blanchon
- Université Clermont Auvergne CNRS UMR 6293 INSERM U1103 Genetic Reproduction and Development Laboratory (GReD) Translational Approach to Epithelial Injury and Repair Team Clermont‐Ferrand France
| | - Antoine Labbé
- Department of Ophthalmology III Quinze‐Vingts National Ophthalmology Hospital IHU FOReSIGHT Paris France
- Sorbonne Université INSERM CNRS Institut de la Vision Paris France
- Department of Ophthalmology Ambroise Paré Hospital APHP Université de Versailles Saint‐Quentin en Yvelines Versailles France
| | - Frédéric Chiambaretta
- University Hospital of Clermont‐Ferrand CHU Clermont‐Ferrand, Ophthalmology Clermont‐Ferrand France
- Université Clermont Auvergne CNRS UMR 6293 INSERM U1103 Genetic Reproduction and Development Laboratory (GReD) Translational Approach to Epithelial Injury and Repair Team Clermont‐Ferrand France
| | - Christophe Baudouin
- Department of Ophthalmology III Quinze‐Vingts National Ophthalmology Hospital IHU FOReSIGHT Paris France
- Sorbonne Université INSERM CNRS Institut de la Vision Paris France
- Department of Ophthalmology Ambroise Paré Hospital APHP Université de Versailles Saint‐Quentin en Yvelines Versailles France
| | - Frédéric Dutheil
- Université Clermont Auvergne CNRS LaPSCo Physiological and Psychosocial Stress CHU Clermont‐Ferrand University Hospital of Clermont‐Ferrand, Preventive and Occupational Medicine Witty Fit Clermont‐Ferrand France
| |
Collapse
|
2
|
Galletti JG, de Paiva CS. The ocular surface immune system through the eyes of aging. Ocul Surf 2021; 20:139-162. [PMID: 33621658 PMCID: PMC8113112 DOI: 10.1016/j.jtos.2021.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Since the last century, advances in healthcare, housing, and education have led to an increase in life expectancy. Longevity is accompanied by a higher prevalence of age-related diseases, such as cancer, autoimmunity, diabetes, and infection, and part of this increase in disease incidence relates to the significant changes that aging brings about in the immune system. The eye is not spared by aging either, presenting with age-related disorders of its own, and interestingly, many of these diseases have immune pathophysiology. Being delicate organs that must be exposed to the environment in order to capture light, the eyes are endowed with a mucosal environment that protects them, the so-called ocular surface. As in other mucosal sites, immune responses at the ocular surface need to be swift and potent to eliminate threats but are at the same time tightly controlled to prevent excessive inflammation and bystander damage. This review will detail how aging affects the mucosal immune response of the ocular surface as a whole and how this process relates to the higher incidence of ocular surface disease in the elderly.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), CONICET-National Academy of Medicine, Buenos Aires, Argentina.
| | - Cintia S de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Yoon CH, Ryu JS, Hwang HS, Kim MK. Comparative Analysis of Age-Related Changes in Lacrimal Glands and Meibomian Glands of a C57BL/6 Male Mouse Model. Int J Mol Sci 2020; 21:ijms21114169. [PMID: 32545199 PMCID: PMC7313015 DOI: 10.3390/ijms21114169] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
It is not known how biological changes in the lacrimal (LGs) and meibomian (MGs) glands contribute to dry eye disease (DED) in a time-dependent manner. In this study, we investigated time-sequenced changes in the inflammation, oxidative stress, and senescence of stem cells in both glands of an aging-related DED mouse model. Eight-week (8W)-, one-year (1Y)-, and two-year (2Y)-old C57BL/6 male mice were used. MG areas of the upper and lower eyelids were analyzed by transillumination meibography imaging. The number of CD45+, 8-OHdG+, Ki-67+, and BrdU+ cells was compared in both glands. Increased corneal staining and decreased tear secretion were observed in aged mice. The MG dropout area increased with aging, and the age-adjusted MG area in lower lids was negatively correlated with the National Eye Institute (NEI) score. Increased CD4+ interferon (IFN)-γ+ cells in LGs were found in both aged mice. An increase in 8-OHdG+ cells in both glands was evident in 2Y-old mice. Reduced Ki-67+ cells, but no change in CD45+ cells, was observed in the MGs of 1Y-old mice. Increased BrdU+ cells were observed in the LGs of aged mice. This suggests that age-dependent DED in C57BL/6 mice is related to inflammation of the LGs, the development of MG atrophy, and oxidative stress in both glands.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea;
- Department of Ophthalmology, Seoul National University Hospital, Seoul 03080, Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea;
| | - Ho Sik Hwang
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea
- Correspondence: (H.S.H.); (M.K.K.); Tel.: +82-2-3779-1025 (H.S.H.); +82-2-2072-2665 (M.K.K.); Fax: +82-2-761-6869 (H.S.H.); +82-2-741-3187 (M.K.K.)
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea;
- Department of Ophthalmology, Seoul National University Hospital, Seoul 03080, Korea
- Correspondence: (H.S.H.); (M.K.K.); Tel.: +82-2-3779-1025 (H.S.H.); +82-2-2072-2665 (M.K.K.); Fax: +82-2-761-6869 (H.S.H.); +82-2-741-3187 (M.K.K.)
| |
Collapse
|
4
|
Kojima T, Dogru M, Kawashima M, Nakamura S, Tsubota K. Advances in the diagnosis and treatment of dry eye. Prog Retin Eye Res 2020; 78:100842. [PMID: 32004729 DOI: 10.1016/j.preteyeres.2020.100842] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
Abstract
The core mechanism of dry eye is the tear film instability. Tear film-oriented diagnosis (TFOD) is a concept to clarify the cause of tear film instability by tear film, and tear film-oriented treatment (TFOT) is a concept to treat dry eye disease by replacing the lacking components of the tear film layer based on the TFOD. In TFOD, the fluorescein breakup pattern of the tear film is important, and the subtype of dry eye can be judged to some extent from the breakup patterns. Current noninvasive devices related to the dynamic analysis of the tear film and visual acuity enabled the diagnosis of dry eye, subtype analysis, and the extent of severity. In Asian countries, secretagogues represent the main treatment in TFOT. Since meibomian gland dysfunction is a factor that greatly affects the tear breakup time, its treatment is also essential in the dry eye treatment strategy. A newly discovered dry eye subtype is the short breakup time-type (BUT) of dry eye. The only abnormal finding in this disease is the short BUT, suggesting a relationship with ocular neuropathic pain and eye strain. Recently, data from many studies have accumulated which show that dry eye is a life-style disease. In addition to the treatment of dry eyes, it is becoming possible to prevent the onset by intervening with the daily habits, diet, exercise and sleep, etc. It has been pointed out that oxidative stress is also involved in the pathology of dry eye, and intervention is being carried out by improving diet and taking supplements. Future research will be needed to link clinical findings to the molecular biological findings in the tear film.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Murat Dogru
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Motoko Kawashima
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Japan; Tsubota Laboratory, Inc., Tokyo, Japan.
| |
Collapse
|
5
|
Shen Lee B, Kabat AG, Bacharach J, Karpecki P, Luchs J. Managing Dry Eye Disease and Facilitating Realistic Patient Expectations: A Review and Appraisal of Current Therapies. Clin Ophthalmol 2020; 14:119-126. [PMID: 32021076 PMCID: PMC6969676 DOI: 10.2147/opth.s228838] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/26/2019] [Indexed: 01/31/2023] Open
Abstract
Dry eye disease (DED) is a multifactorial disease of the ocular surface characterized by loss of homeostasis of the tear film and accompanied by ocular signs and symptoms such as corneal and conjunctival damage, patient discomfort, and visual disturbance. The prevalence of DED ranges from 5%−33%. Patients with DED may have a reduced quality of life due to their discomfort and visual disturbances. The multifactorial nature of DED requires a multi-targeted treatment approach to address the signs and symptoms. Treatment for DED should follow a step-wise approach beginning with education, dietary modification, and lid and lash hygiene, and progressing to pharmacologic and nonpharmacologic interventions. Ocular lubricants, a mainstay of DED therapy, provide temporary symptomatic relief for the patient, but do not address the underlying pathophysiology. Some currently available pharmacologic treatments that address the underlying pathophysiology of DED may have a delay of 3−6 months in the onset of therapeutic effect; however, these treatment options may also have tolerability issues. These challenges highlight the need for newer pharmacologic treatments with an earlier onset of observable clinical effect and the potential for improved tolerability profile. Patient education is vital to DED management and should convey the complex and chronic nature of DED. It is important for the eye care practitioner to set realistic expectations with the patient when managing DED to help improve treatment success. This helps the patient understand the need for ongoing treatment and that results will likely not be seen immediately. This review covers the current management of DED, focusing on pharmacologic management, and offers recommendations for the practitioner to help facilitate realistic patient expectations for the treatment of DED.
Collapse
Affiliation(s)
| | - Alan G Kabat
- Pennsylvania College of Optometry, Elkins Park, PA, USA
| | | | | | - Jodi Luchs
- Florida Vision Institute, West Palm Beach, FL, USA
| |
Collapse
|
6
|
Bakeeva LE, Eldarov CM, Vangely IM, Kolosova NG, Vays VB. Mitochondria-targeted antioxidant SkQ1 reduces age-related alterations in the ultrastructure of the lacrimal gland. Oncotarget 2018; 7:80208-80222. [PMID: 27852065 PMCID: PMC5348314 DOI: 10.18632/oncotarget.13303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/02/2016] [Indexed: 12/17/2022] Open
Abstract
Dry eye syndrome is an eye disorder affecting many people at an old age. Because dry eye syndrome is accelerated by aging, a useful approach to the prevention of this syndrome may be an intervention into the aging process. Previously, we showed that the mitochondria-targeted antioxidant SkQ1 delays manifestations of aging and inhibits the development of age-related diseases including dry eye syndrome. Nevertheless, the link between SkQ1's effects and its suppression of age-related changes in the lacrimal gland remains unclear. Here we demonstrated that dietary supplementation with SkQ1 (250 nmol/[kg body weight] daily) starting at age 1.5 months significantly alleviated the pathological changes in lacrimal glands of Wistar rats by age 24 months. By this age, lacrimal glands underwent dramatic deterioration of the ultrastructure that was indicative of irreversible disturbances in these glands' functioning. In contrast, in SkQ1-treated rats, the ultrastructure of the lacrimal gland was similar to that in much younger rats. Morphometric analysis of electron-microscopic specimens of lacrimal glands revealed the presence of numerous secretory granules in acinar cells and a significant increase in the number of operating intercalary ducts. Our results confirm that dietary supplementation with SkQ1 is a promising approach to healthy ageing and to prevention of aberrations in the lacrimal gland that underlie dry eye syndrome.
Collapse
Affiliation(s)
- Lora E Bakeeva
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Chupalav M Eldarov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Irina M Vangely
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Valeriya B Vays
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia
| |
Collapse
|
7
|
Jones L, Downie LE, Korb D, Benitez-del-Castillo JM, Dana R, Deng SX, Dong PN, Geerling G, Hida RY, Liu Y, Seo KY, Tauber J, Wakamatsu TH, Xu J, Wolffsohn JS, Craig JP. TFOS DEWS II Management and Therapy Report. Ocul Surf 2017; 15:575-628. [DOI: 10.1016/j.jtos.2017.05.006] [Citation(s) in RCA: 578] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023]
|
8
|
Bakeeva LE. Age-Related Changes in Ultrastructure of Mitochondria. Effect of SkQ1. BIOCHEMISTRY (MOSCOW) 2016; 80:1582-8. [PMID: 26638683 DOI: 10.1134/s0006297915120068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For many years, investigators have attempted to identify unique ultrastructural conditions of mitochondria related to aging. However, this did not result in definitive results. At present, this issue has again become of topical interest due to development of the mitochondrial theory of aging and of engineering of a novel antioxidant class known as mitochondria-targeted antioxidants. The review briefly discusses experimental results that, from our perspective, allow the most objective understanding regarding age-related changes in mitochondrial ultrastructure.
Collapse
Affiliation(s)
- L E Bakeeva
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| |
Collapse
|
9
|
Lin JB, Tsubota K, Apte RS. A glimpse at the aging eye. NPJ Aging Mech Dis 2016; 2:16003. [PMID: 28721262 PMCID: PMC5515005 DOI: 10.1038/npjamd.2016.3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 12/11/2022] Open
Abstract
Extensive investigations have demonstrated that organismal aging is associated with tissue dysfunction in many organs. The eye is no exception to this rule. Under healthy conditions, the eye is designed like an advanced camera with the central role of translating light from the external world into a coherent neural signal that can be transmitted to the brain for processing into a precise visual image. This complex process requires precisely maintained machinery. At the front of the eye, the transparency of both the cornea and the lens are crucial to allow passage of photons to the light-sensitive portion of the eye. Similarly, the highly organized structure of the retina located at the back of the eye is indispensable to allow for effective signal transduction and efficient signal transmission. Aging affects ocular structures in various ways, and these sequelae have been well defined as distinct clinical entities. In many instances, aging leads to ocular tissue dysfunction and disease. Nonetheless, despite clear evidence that age-associated visual impairment has significant psychosocial consequences, current treatment paradigms for many of these conditions are inadequate. In addition, strategies to decelerate or reverse age-associated deterioration in ocular function are still in their infancy. This review focuses on the cellular and molecular pathophysiology of the aging eye. Ultimately, we hope that a refined understanding of the aging eye can guide targeted therapies against cellular aging and disease.
Collapse
Affiliation(s)
- Jonathan B Lin
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
- Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St Louis, MO, USA
- Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
10
|
Abstract
The interplay of different structures belonging to either the anterior segment of the eye or its accessory visual apparatus, which all share common embryological, anatomical, functional, and physiological features, is discussed. Explanation of such terms, as ocular surface, lacrimal functional unit, and ocular surface system, is provided.
Collapse
Affiliation(s)
- T N Safonova
- Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - L S Pateyuk
- Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021
| |
Collapse
|
11
|
Ultrastructural changes in ageing lacrimal gland in Wistar rats. Bull Exp Biol Med 2014; 157:268-72. [PMID: 24952496 DOI: 10.1007/s10517-014-2542-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Indexed: 10/25/2022]
Abstract
We studied age-related ultrastructural reorganization in acinar cells and intercalary ducts of the lacrimal gland acini in 3-, 15-, and 24-month-old Wistar rats. Ultrastructural changes in the lacrimal gland progressed with age and led to dramatic ultrastructural reconstruction of the lacrimal gland at the age of 24 months. These changes mainly included complete destruction of acinar cells and increase in the number of enlarged branched ducts that filled the greater part of gland volume; these dusts were lined with epithelial cells with altered ultrastructure. Acinar cells in the acini communicate via special connecting intermembrane complexes formed by desmosomes and mitochondria adjacent to them in each contacting cell. It is assumed that association of mitochondria with desmosomes found in the acini is a special functional complex indicating that every single acinus is a functional formation. This assumption is indirectly confirmed by the fact that the destruction never occurred in a single cell, but always involved all cells constituting the acini. The revealed ultrastructural changes reflect age-related deterioration of the secretory function of the lacrimal gland.
Collapse
|