1
|
Zhou B, Liang C, Li P, Xiao H. Revisiting X-linked congenital ichthyosis. Int J Dermatol 2024. [PMID: 39086014 DOI: 10.1111/ijd.17396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 08/02/2024]
Abstract
X-linked recessive ichthyosis (XLI) is a hereditary skin disease characterized by generalized dryness and scaling of the skin, with frequent extracutaneous manifestations. It is the second most common type of ichthyosis, with a prevalence of 1/6,000 to 1/2,000 in males and without any racial or geographical differences. The causative gene for XLI is the steroid sulfatase gene (STS), located on Xp22.3. STS deficiency causes an abnormal cholesterol sulfate (CS) accumulation in the stratum corneum (SC). Excess CS induces epidermal permeability barrier dysfunction and scaling abnormalities. This review summarizes XLI's genetic, clinical, and pathological features, pathogenesis, diagnosis and differential diagnoses, and therapeutic perspectives. Further understanding the role of the STS gene pathogenic variants in XLI may contribute to a more accurate and efficient clinical diagnosis of XLI and provide novel strategies for its treatment and prenatal diagnosis.
Collapse
Affiliation(s)
- Baishun Zhou
- Department of Pathology, School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| | - Cancan Liang
- Department of Pathology, School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| | - Peiyao Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, China NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Heng Xiao
- Department of Pathology, School of Medicine, Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
2
|
Abedini SS, Akhavantabasi S, Liang Y, Heng JIT, Alizadehsani R, Dehzangi I, Bauer DC, Alinejad-Rokny H. A critical review of the impact of candidate copy number variants on autism spectrum disorder. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108509. [PMID: 38977176 DOI: 10.1016/j.mrrev.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder (NDD) influenced by genetic, epigenetic, and environmental factors. Recent advancements in genomic analysis have shed light on numerous genes associated with ASD, highlighting the significant role of both common and rare genetic mutations, as well as copy number variations (CNVs), single nucleotide polymorphisms (SNPs) and unique de novo variants. These genetic variations disrupt neurodevelopmental pathways, contributing to the disorder's complexity. Notably, CNVs are present in 10 %-20 % of individuals with autism, with 3 %-7 % detectable through cytogenetic methods. While the role of submicroscopic CNVs in ASD has been recently studied, their association with genomic loci and genes has not been thoroughly explored. In this review, we focus on 47 CNV regions linked to ASD, encompassing 1632 genes, including protein-coding genes and long non-coding RNAs (lncRNAs), of which 659 show significant brain expression. Using a list of ASD-associated genes from SFARI, we detect 17 regions harboring at least one known ASD-related protein-coding gene. Of the remaining 30 regions, we identify 24 regions containing at least one protein-coding gene with brain-enriched expression and a nervous system phenotype in mouse mutants, and one lncRNA with both brain-enriched expression and upregulation in iPSC to neuron differentiation. This review not only expands our understanding of the genetic diversity associated with ASD but also underscores the potential of lncRNAs in contributing to its etiology. Additionally, the discovered CNVs will be a valuable resource for future diagnostic, therapeutic, and research endeavors aimed at prioritizing genetic variations in ASD.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Abedini
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology & Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Shiva Akhavantabasi
- Department of Molecular Biology and Genetics, Yeni Yuzyil University, Istanbul, Turkey; Ghiaseddin Jamshid Kashani University, Andisheh University Town, Danesh Blvd, 3441356611, Abyek, Qazvin, Iran
| | - Yuheng Liang
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Julian Ik-Tsen Heng
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6845, Australia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria, Australia
| | - Iman Dehzangi
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; Department of Computer Science, Rutgers University, Camden, NJ 08102, USA
| | - Denis C Bauer
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia; Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, Australia
| | - Hamid Alinejad-Rokny
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Park JS, Saeidian AH, Youssefian L, Kondratuk KE, Pride HB, Vahidnezhad H, Uitto J. Inherited ichthyosis as a paradigm of rare skin disorders: Genomic medicine, pathogenesis, and management. J Am Acad Dermatol 2023; 89:1215-1226. [PMID: 35963288 DOI: 10.1016/j.jaad.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022]
Abstract
Great advances have been made in the field of heritable skin disorders using next-generation sequencing (NGS) technologies (ie, whole-genome sequencing, whole-exome sequencing, whole-transcriptome sequencing, and disease-targeted multigene panels). When NGS first became available, the cost and lack of access to these technologies were limiting factors; however, with decreasing sequencing costs and the expanding knowledge base of genetic skin diseases, fundamental awareness of NGS has become prudent. The heritable ichthyoses comprise a genotypically and phenotypically heterogeneous group of monogenic keratinization disorders characterized by persistent scaling, with at least 55 distinct genes currently implicated in causing nonsyndromic and syndromic forms of the disease. By providing a simplified overview of available NGS techniques and applying them in the context of ichthyosis, one of the most common genodermatoses, we hope to encourage dermatologists to offer, when appropriate, genetic testing earlier in patients with unsolved presentations. With the aid of NGS, dermatologists can provide diagnostic certainty in cases of suspected genodermatoses and offer potentially life-changing genome-guided and targeted therapies as they become available.
Collapse
Affiliation(s)
- Jason S Park
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Howard B Pride
- Department of Dermatology, Geisinger Medical Center, Danville, Pennsylvania
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania; Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
4
|
Williams D, Onyia O, Chung DD, Kirakosyan A, Hovakimyan A, Payne C, Moshirfar M, Aldave AJ. Identification of a novel partial deletion of STS associated with pre-Descemet corneal dystrophy and X-linked ichthyosis. Mol Vis 2023; 29:25-30. [PMID: 37287641 PMCID: PMC10243677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
Purpose Pre-Descemet corneal dystrophy (PDCD) with X-linked ichthyosis (XLI) is associated with mutations in or deletions of the steroid sulfatase gene (STS). As only three cases of genetically confirmed PDCD associated with XLI have been reported, we sought to expand our understanding of the genetic basis of PDCD by screening STS in two previously unreported families. Materials and Methods The affected individuals underwent cutaneous and slit-lamp examinations. Saliva samples collected from each affected individual served as a source of DNA for the amplification of the 10 coding exons of STS and flanking DNA markers. Results The slit-lamp examination of three affected men (two of whom were brothers) from two families revealed bilateral punctate posterior corneal stromal opacities anterior to the Descemet membrane. Cutaneous examination demonstrated dry, coarse, scaly ichthyotic changes characteristic of XLI in all individuals. Genetic examination of the STS locus on the X chromosome in Case 1 revealed a deletion that spanned across DNA markers DXS1130-DXS237, which includes all the coding exons (exons 1-10) of STS. Genetic screening of Cases 2 and 3 revealed a partial deletion of the STS locus involving exons 1-7 and flanking DNA marker DXS1130 on the X chromosome. Conclusions PDCD with XLI may be associated with either partial or complete deletion of STS. Despite the identification of point mutations, partial deletion, and complete deletion of STS in different affected families reported to date, there was no apparent difference in the affected phenotype between the families, suggesting that the identified variants likely all resulted in loss of function of steroid sulfatase.
Collapse
Affiliation(s)
- Dominic Williams
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Onyinye Onyia
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Doug D. Chung
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Artak Kirakosyan
- Department of Ophthalmology, Malayan Ophthalmologic Center, Yerevan, Armenia
| | - Anna Hovakimyan
- Department of Ophthalmology, Malayan Ophthalmologic Center, Yerevan, Armenia
| | - Carter Payne
- Case Western Reserve University School of Medicine
- Hoopes Vision Research Center, Draper, UT
| | - Majid Moshirfar
- Hoopes Vision Research Center, Draper, UT
- John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT
| | - Anthony J. Aldave
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
5
|
Hu H, Huang Y, Hou R, Xu H, Liu Y, Liao X, Xu J, Jiang L, Wang D. Xp22.31 copy number variations in 87 fetuses: refined genotype-phenotype correlations by prenatal and postnatal follow-up. BMC Med Genomics 2023; 16:69. [PMID: 37013593 PMCID: PMC10069036 DOI: 10.1186/s12920-023-01493-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Xp22.31 deletion and duplication have been described in various studies, but different laboratories interpret pathogenicity differently. OBJECTIVES Our study aimed to refine the genotype-phenotype associations between Xp22.31 copy number variants in fetuses, with the aim of providing data support to genetic counseling. METHODS We retrospectively analyzed karyotyping and single nucleotide polymorphism array results from 87 fetuses and their family members. Phenotypic data were obtained through follow-up visits. RESULTS The percentage of fetuses carrying the Xp22.31 deletions (9 females, 12 males) was 24.1% (n = 21), while duplications (38 females, 28 males) accounted for 75.9% (n = 66). Here, we noted that the typical region (from 6.4 to 8.1 Mb, hg19) was detected in the highest ratio, either in the fetuses with deletions (76.2%, 16 of 21) or duplications (69.7%, 46 of 66). In female deletion carriers, termination of pregnancy was chosen for two fetuses, and the remaining seven were born without distinct phenotypic abnormalities. In male deletion carriers, termination of pregnancy was chosen for four fetuses, and the remaining eight of them displayed ichthyosis without neurodevelopmental anomalies. In two of these cases, the chromosomal imbalance was inherited from the maternal grandfathers, who also only had ichthyosis phenotypes. Among the 66 duplication carriers, two cases were lost at follow-up, and pregnancy was terminated for eight cases. There were no other clinical findings in the rest of the 56 fetuses, including two with Xp22.31 tetrasomy, for either male or female carriers. CONCLUSION Our observations provide support for genetic counseling in male and female carriers of Xp22.31 copy number variants. Most of them are asymptomatic in male deletion carriers, except for skin findings. Our study is consistent with the view that the Xp22.31 duplication may be a benign variant in both sexes.
Collapse
Affiliation(s)
- Huamei Hu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yulin Huang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Renke Hou
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huanhuan Xu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yalan Liu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xueqian Liao
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Juchun Xu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lupin Jiang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Dan Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
6
|
Chen CP, Su JW, Chern SR, Wu PS, Chen SW, Wu FT, Chen WL, Lee MS, Pan CW, Chen YY, Wang W. Cytogenetic discrepancy between uncultured amniocytes and cultured amniocytes in mosaic trisomy 18 at amniocentesis in a pregnancy with a favorable fetal outcome and maternal uniparental disomy 18. Taiwan J Obstet Gynecol 2022; 61:684-689. [PMID: 35779922 DOI: 10.1016/j.tjog.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE We present prenatal diagnosis of mosaic trisomy 18 in a pregnancy with a favorable fetal outcome and maternal uniparental disomy 18. CASE REPORT A 38-year-old, primigravid woman underwent the first amniocentesis at 16 weeks of gestation because advanced maternal age. Amniocentesis revealed a karyotype of 46,XX [22/22] in cultured amniocytes, and 36% mosaicism for trisomy 18 and a maternally inherited Xp22.31 microdeletion by array comparative genomic hybridization (aCGH) in uncultured amniocytes. The second amniocentesis at 18 weeks of gestation revealed 47,XX,+18 [14]/46,XX [36] in cultured amniocytes and 36% mosaicism for trisomy 18 by multiplex ligation-dependent probe amplification (MLPA) P095 in cultured amniocytes. Prenatal ultrasound was normal. The parents were phenotypically normal. The third amniocentesis at 23 weeks of gestation revealed 47,XX,+18 [3]/46,XX [17] in cultured amniocytes, and in uncultured amniocytes, aCGH revealed 45%-50% mosaicism for trisomy 18, interphase fluorescence in situ hybridization (FISH) revealed 36% (36/100 cells) mosaicism for trisomy 18, and quantitative fluorescent polymerase chain reaction (QF-PCR) showed mosaic maternal uniparental heterodisomy for chromosome 18 and mosaic trisomy 18 of maternal origin. The fourth amniocentesis at 32 weeks of gestation revealed a karyotype of 46,XX [20/20] in cultured amniocytes, and in uncultured amniocytes, aCGH revealed 50%-60% mosaicism for trisomy 18, FISH revealed 21.8% (22/101 cells) mosaicism for trisomy 18, and non-invasive prenatal testing (NIPT) showed chromosome 18 gene dosage increase in the maternal blood. At 34 weeks of gestation, a 1480-g phenotypically normal baby was delivered. The cord blood had 47,XX,+18 [10]/46,XX [30]. The umbilical cord had 47,XX,+18 [4]/46,XX [36]. The placenta had 47,XX,+18 [40/40], and QF-PCR analysis confirmed trisomy 18 of maternal origin. When follow-up at age four months, the neonate was phenotypically normal, FISH analysis on buccal mucosal cells revealed 2% (2/100 cells) mosaicism for trisomy 18, and the peripheral blood had 47,XX,+18 [18]/46,XX [22]. When follow-up at age eight months, the neonate had normal development, the peripheral blood had 47,XX,+18 [15]/46,XX [25], and the buccal mucosal cells showed maternal uniparental heterodisomy for chromosome 18. CONCLUSION Cytogenetic discrepancy may occur between uncultured and cultured amniocytes in mosaic trisomy 18 at amniocentesis. Cultured amniocytes may present progressive decrease in the levels of mosaicism for trisomy 18 as the fetus grows. Mosaic trisomy 18 at amniocentesis can be associated with a favorable outcome.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Jun-Wei Su
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Fang-Tzu Wu
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Wen-Lin Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Meng-Shan Lee
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Wen Pan
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yun-Yi Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
7
|
Multimodal Imaging of Pre-Descemet Corneal Dystrophy Associated With X-Linked Ichthyosis and Deletion of the STS Gene. Cornea 2021; 39:1442-1445. [PMID: 32482962 DOI: 10.1097/ico.0000000000002382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the presence of pre-Descemet corneal dystrophy (PDCD) in association with X-linked ichthyosis (XLI) in an 11-year-old boy using multimodal imaging and genetic analysis. METHODS Corneal opacities were examined and imaged with slit-lamp biomicroscopy, anterior segment optical coherence tomography, noncontact specular microscopy, and in vivo confocal microscopy. Cytogenomic array analysis was performed using genomic DNA isolated from the patient. RESULTS Corneal opacities characteristic of PDCD located in the posterior corneal stroma just anterior to Descemet membrane were identified by slit-lamp biomicroscopy. A pre-Descemet hyper-reflective line, consistent with these opacities, was seen with anterior segment optical coherence tomography. Scheimpflug tomography revealed a bimodal peak light scattering. In vivo confocal microscopy findings were unremarkable. Copy number analysis identified a 4389 kbp hemizygous deletion on the X chromosome (chr. X: 6,540,898-8,167,604), resulting in the deletion of 4 genes, including the known locus of XLI, the STS gene. CONCLUSIONS This report demonstrates that PDCD-associated XLI may present in children and that the diagnosis may be confirmed through multimodal imaging in conjunction with genetic analysis.
Collapse
|
8
|
Domínguez-Serrano FB, Caro-Magdaleno M, Mataix-Albert B, Molina-Solana P, Montero-Iruzubieta J, Rodríguez-de-la-Rúa E. Ocular surface analysis in patients diagnosed with X-linked ichthyosis. ACTA ACUST UNITED AC 2020; 95:565-568. [PMID: 32660766 DOI: 10.1016/j.oftal.2020.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 10/23/2022]
Abstract
Seven patients (14 eyes) diagnosed with X-linked ichthyosis were studied using the Schirmer test, biomicroscopy, tonometry, endothelial count, optical coherence tomography, Pentacam®, ocular surface analyser, and confocal microscopy. The mean age was 33.83±20.17 years (range: 7-64 years). The most frequent findings in biomicroscopy were Meibomian glands dysfunction (83.3%) and stromal corneal opacities (33%). The tear break-up time was found shortened in 25% of the eyes. Confocal microscopy (both eyes) revealed activated keratocytes with hyper-reflective particles inside them in the anterior stroma and outside them in the posterior stroma. It is believed that the inclusion of the use of confocal microscopy will help in a better understanding of the corneal pathology associated with ichthyosis X, as well as new characteristics of these patients.
Collapse
Affiliation(s)
| | - M Caro-Magdaleno
- UGC Oftalmología, Hospital Universitario Virgen Macarena, Sevilla, España; Departamento de Cirugía, Universidad de Sevilla, Sevilla, España; RETICS-OFTARED.
| | - B Mataix-Albert
- UGC Oftalmología, Hospital Universitario Virgen Macarena, Sevilla, España
| | - P Molina-Solana
- UGC Oftalmología, Hospital Universitario Virgen Macarena, Sevilla, España
| | | | - E Rodríguez-de-la-Rúa
- UGC Oftalmología, Hospital Universitario Virgen Macarena, Sevilla, España; Departamento de Cirugía, Universidad de Sevilla, Sevilla, España; RETICS-OFTARED
| |
Collapse
|
9
|
Soh YQ, Kocaba V, Weiss JS, Jurkunas UV, Kinoshita S, Aldave AJ, Mehta JS. Corneal dystrophies. Nat Rev Dis Primers 2020; 6:46. [PMID: 32528047 DOI: 10.1038/s41572-020-0178-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/21/2022]
Abstract
Corneal dystrophies are broadly defined as inherited disorders that affect any layer of the cornea and are usually progressive, bilateral conditions that do not have systemic effects. The 2015 International Classification of Corneal Dystrophies classifies corneal dystrophies into four classes: epithelial and subepithelial dystrophies, epithelial-stromal TGFBI dystrophies, stromal dystrophies and endothelial dystrophies. Whereas some corneal dystrophies may result in few or mild symptoms and morbidity throughout a patient's lifetime, others may progress and eventually result in substantial visual and ocular disturbances that require medical or surgical intervention. Corneal transplantation, either with full-thickness or partial-thickness donor tissue, may be indicated for patients with advanced corneal dystrophies. Although corneal transplantation techniques have improved considerably over the past two decades, these surgeries are still associated with postoperative risks of disease recurrence, graft failure and other complications that may result in blindness. In addition, a global shortage of cadaveric corneal graft tissue critically limits accessibility to corneal transplantation in some parts of the world. Ongoing advances in gene therapy, regenerative therapy and cell augmentation therapy may eventually result in the development of alternative, novel treatments for corneal dystrophies, which may substantially improve the quality of life of patients with these disorders.
Collapse
Affiliation(s)
- Yu Qiang Soh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Viridiana Kocaba
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Netherlands Institute for Innovative Ocular Surgery, Rotterdam, Netherlands
| | - Jayne S Weiss
- Department of Ophthalmology, Pathology and Pharmacology, Louisiana State University, School of Medicine, New Orleans, USA
| | - Ula V Jurkunas
- Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Schepens Eye Research Institute, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anthony J Aldave
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore. .,Singapore National Eye Centre, Singapore, Singapore. .,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore. .,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|
10
|
Afzal S, Ramzan K, Ullah S, Wakil SM, Jamal A, Basit S, Waqar AB. A novel nonsense mutation in the STS gene in a Pakistani family with X-linked recessive ichthyosis: including a very rare case of two homozygous female patients. BMC MEDICAL GENETICS 2020; 21:20. [PMID: 32005174 PMCID: PMC6995215 DOI: 10.1186/s12881-020-0964-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/24/2020] [Indexed: 01/29/2023]
Abstract
Background X-linked ichthyosis (XLI; OMIM# 308100) is a recessive keratinization disorder characterized by the presence of dark brown, polygonal, adherent scales on different parts of the body surface. It almost exclusively affects males and the estimated prevalence ranges from 1:2000–6000 in males worldwide. Extracutaneous manifestations are frequent including corneal opacities, cryptorchidism, neuropsychiatric symptoms or others. Up to 90% of XLI cases are caused by recurrent hemizygous microdeletion encompassing entire STS gene on chromosome Xp22.3, while only a minority of patients shows partial deletions or loss of function point mutations in STS. Larger deletions also involving contiguous genes are identified in syndromic patients. Methods Here, we report clinical and genetic findings of a large Pakistani family having 16 affected individuals including 2 females with XLI. Molecular karyotyping and direct DNA sequencing of coding region of the STS gene was performed. Results The clinical manifestations in affected individuals involved generalized dryness and scaling of the skin with polygonal, dark scales of the skin on scalp, trunk, limbs, and neck while sparing face, palms and soles. There were no associated extra-cutaneous features such as short stature, cryptorchidism, photophobia, corneal opacities, male baldness, and behavioral, cognitive, or neurological phenotypes including intellectual disability, autism or attention deficit hyperactivity disorder. Molecular karyotyping was normal and no copy number variation was found. Sanger sequencing identified a novel hemizygous nonsense mutation (c.287G > A; p.W96*), in exon 4 of STS gene in all affected male individuals. In addition, two XLI affected females in the family were found to be homozygous for the identified variant. Conclusions This study is useful for understanding the genetic basis of XLI in the patients studied, for extending the known mutational spectrum of STS, diagnosis of female carriers and for further application of mutation screening in the genetic counseling of this family.
Collapse
Affiliation(s)
- Sibtain Afzal
- Faculty of Allied and Health Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Sajjad Ullah
- Faculty of Allied and Health Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Salma M Wakil
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Arshad Jamal
- Faculty of Allied and Health Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Madinah Al-Munawarah, Medina, Saudi Arabia
| | - Ahmed Bilal Waqar
- Faculty of Allied and Health Sciences, Imperial College of Business Studies, Lahore, Pakistan.
| |
Collapse
|
11
|
Alafaleq M, Georgeon C, Grieve K, Borderie VM. Multimodal imaging of pre-Descemet corneal dystrophy. Eur J Ophthalmol 2019; 30:908-916. [PMID: 31298040 DOI: 10.1177/1120672119862505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE The aim of this study was to assess structural and histological changes associated with pre-Descemet corneal dystrophy with multimodal in vivo imaging. METHODS Retrospective case series including eight corneas from four unrelated male patients with pre-Descemet corneal dystrophy characterized by the presence of punctiform gray opacities located just anterior to the Descemet membrane at slit-lamp examination of both eyes. In vivo confocal microscopy images were obtained in the central, paracentral, and peripheral corneal zones from the superficial epithelial cell layer down to the corneal endothelium in both eyes. Spectral domain optical coherence tomography scans (central and limbal zones) and mapping of both corneas were acquired. RESULTS Diffuse small extracellular stromal deposits, presence of enlarged hyperreflective keratocytes in the posterior stroma with either hyperreflective or hyporeflective intracellular dots, and presence of activated keratocytes in the very anterior stroma were observed in all corneas with in vivo confocal microscopy. Spectral domain optical coherence tomography scans showed a hyperreflective line anterior to Descemet's membrane running from limbus to limbus and associated with a second thinner hyperreflective line just beneath Bowman's layer. Fine hyperreflective particles were observed in the posterior, mid, and anterior stroma on optical coherence tomography scans. CONCLUSION The clinical presentation and structural anomalies found in isolated sporadic pre-Descemet corneal dystrophy are in favor of a degenerative process affecting corneal keratocytes with no epithelial or endothelial involvement. The maximum damage is found just anterior to the Descemet membrane resulting in pre-Descemet membrane location of stromal opacities. Multimodal imaging of cornea reveals that the disorder affects the whole stroma and it permits better understanding of pre-Descemet corneal dystrophy pathophysiology together with ascertained diagnosis.
Collapse
Affiliation(s)
- Munirah Alafaleq
- Service V, Centre Hospitalier National d'Ophtalmologie des XV-XX, Sorbonne Université, Paris, France
| | - Cristina Georgeon
- Service V, Centre Hospitalier National d'Ophtalmologie des XV-XX, Sorbonne Université, Paris, France
| | - Kate Grieve
- Service V, Centre Hospitalier National d'Ophtalmologie des XV-XX, Sorbonne Université, Paris, France
| | - Vincent M Borderie
- Service V, Centre Hospitalier National d'Ophtalmologie des XV-XX, Sorbonne Université, Paris, France
| |
Collapse
|
12
|
Diociaiuti A, Angioni A, Pisaneschi E, Alesi V, Zambruno G, Novelli A, El Hachem M. X-linked ichthyosis: Clinical and molecular findings in 35 Italian patients. Exp Dermatol 2018; 28:1156-1163. [PMID: 29672931 DOI: 10.1111/exd.13667] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2018] [Indexed: 11/29/2022]
Abstract
Recessive X-linked ichthyosis (XLI), the second most common ichthyosis, is caused by mutations in the STS gene encoding the steroid sulfatase enzyme. A complete deletion of the STS gene is found in 85%-90% of cases. Rarely, larger deletions involving contiguous genes are detected in syndromic patients. We report the clinical and molecular genetic findings in a series of 35 consecutive Italian male patients. All patients underwent molecular testing by MLPA or aCGH, followed, in case of negative results, by next-generation sequencing analysis. Neuropsychiatric, ophthalmological and paediatric evaluations were also performed. Our survey showed a frequent presence of disease manifestations at birth (42.8%). Fold and palmoplantar surfaces were involved in 18 (51%) and 7 (20%) patients, respectively. Fourteen patients (42%) presented neuropsychiatric symptoms, including attention-deficit hyperactivity disorder and motor disabilities. In addition, two patients with mental retardation were shown to be affected by a contiguous gene syndrome. Twenty-seven patients had a complete STS deletion, one a partial deletion and 7 carried missense mutations, two of which previously unreported. In addition, a de novo STS deletion was identified in a sporadic case. The frequent presence of palmoplantar and fold involvement in XLI should be taken into account when considering the differential diagnosis with ichthyosis vulgaris. Our findings also underline the relevance of involving the neuropsychiatrist in the multidisciplinary management of XLI. Finally, we report for the first time a de novo mutation which shows that STS deletion can also occur in oogenesis.
Collapse
Affiliation(s)
- Andrea Diociaiuti
- Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Adriano Angioni
- Molecular Genetics Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Pisaneschi
- Molecular Genetics Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viola Alesi
- Molecular Genetics Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Antonio Novelli
- Molecular Genetics Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - May El Hachem
- Dermatology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
13
|
Siebelmann S, Scholz P, Sonnenschein S, Bachmann B, Matthaei M, Cursiefen C, Heindl LM. Anterior segment optical coherence tomography for the diagnosis of corneal dystrophies according to the IC3D classification. Surv Ophthalmol 2018; 63:365-380. [DOI: 10.1016/j.survophthal.2017.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022]
|
14
|
Malhotra R, Hernández-Martın A, Oji V. Ocular manifestations, complications and management of congenital ichthyoses: a new look. Br J Ophthalmol 2017; 102:586-592. [DOI: 10.1136/bjophthalmol-2017-310615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 02/04/2023]
Abstract
Congenital ichthyoses (CI) are rare genetic skin keratinisation diseases characterised by generalised scaling and a variable degree of erythema and hyperkeratosis. Ocular involvement includes the eyelids, conjunctiva and all layers of the cornea. Ophthalmic input should include regular slit lamp review with the primary aim to prevent a corneal epithelial defect, secondary bacterial infection, scarring or perforation. This review highlights the current literature regarding ophthalmic findings and management of CI.
Collapse
|
15
|
Malik A, Amer AB, Salama M, Haddad B, Alrifai MT, Balwi MA, Davies W, Eyaid W. X-linked ichthyosis associated with psychosis and behavioral abnormalities: a case report. J Med Case Rep 2017; 11:267. [PMID: 28934990 PMCID: PMC5609014 DOI: 10.1186/s13256-017-1420-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/08/2017] [Indexed: 01/21/2023] Open
Abstract
Background X-linked ichthyosis is a dermatological condition caused by deficiency for the enzyme steroid sulfatase. Previously, X-linked ichthyosis/steroid sulfatase deficiency has been associated with developmental and neurological phenotypes. Here, we show for the first time, that X-linked ichthyosis may be comorbid with an additional psychiatric phenotype (psychosis). Case presentation We report the case of an 11-year-old Saudi Arabian boy with X-linked ichthyosis associated with psychosis, mental retardation, autism spectrum disorder, inattentive attention deficit hyperactivity disorder, and epilepsy. Genetic analysis revealed a 1.68 Mb deletion encompassing STS in 95% of cells while biochemical analysis revealed correspondingly low steroid sulfatase activity consistent with a diagnosis of X-linked ichthyosis. The psychotic symptoms could be reasonably well controlled by administration of an atypical antipsychotic. Conclusions This report describes a case of comorbid X-linked ichthyosis and psychosis (most closely corresponding to early-onset schizophrenia) for the first time, and suggests that deficiency for steroid sulfatase and contiguous genes may increase vulnerability to psychosis as well as other psychological disorders.
Collapse
Affiliation(s)
- Amna Malik
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - Ahmed Bait Amer
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - Mohammed Salama
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - Bander Haddad
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - Muhammad T Alrifai
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - Mohammed Al Balwi
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia.,King AbdulAziz Medical City, Riyadh, Saudi Arabia
| | - William Davies
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK. .,School of Psychology, Cardiff University, Cardiff, UK. .,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK. .,MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Wafaa Eyaid
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia. .,King Saud Bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia. .,King AbdulAziz Medical City, Riyadh, Saudi Arabia. .,Department of Pediatrics MC 1510, King AbdulAziz Medical City, King Fahad National Guard Hospital, P.O Box 22490, Riyadh, 11426, Saudi Arabia.
| |
Collapse
|
16
|
Abstract
Degenerative or hereditary corneal diseases are sometimes difficult to discriminate. Corneal dystrophies affect approximately 0.09 % of the population. They are identified by the IC3D classification based on their phenotype, genotype and evidence gathered for their diagnosis. Practically, the ophthalmologist manages functional symptoms, such as recurrent erosions, visual loss and amblyopia, photophobia, foreign body sensation, and sometimes pain and aesthetic concerns. Medical treatments consist of drops to promote healing, ointments, hyperosmotic agents and bandage contact lenses. Less invasive surgical treatments are used as second line therapy (phototherapeutic keratectomy, lamellar keratectomy). More invasive procedures may eventually be utilized (lamellar or penetrating keratoplasty). Anterior lamellar or endothelial keratoplasty are now preferred to penetrating keratoplasty, although the latter still remains the only possible option in some cases. Some rare dystrophies require coordinated and comprehensive medical care.
Collapse
Affiliation(s)
- J-L Bourges
- Université Paris Descartes, Sorbonne Paris Cité, 15, rue École-de-Médecine, 75006 Paris, France; Unité d'ophtalmologie de l'Hôtel-Dieu, service d'ophtalmologie, hôpitaux universitaires Paris Centre, Assistance publique-Hôpitaux de Paris, 1, place du Parvis-Notre-Dame, 75004 Paris, France; Équipe 17, Inserm UMRS 1138, centre de recherche des Cordeliers, 15, rue de l'École-de-Médecine, 75006 Paris, France.
| |
Collapse
|
17
|
Bourges JL. Corneal dystrophies. J Fr Ophtalmol 2017; 40:e177-e192. [PMID: 28583694 DOI: 10.1016/j.jfo.2017.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
Degenerative or hereditary corneal diseases are sometimes difficult to discriminate. Corneal dystrophies affect approximately 0.09% of the population. They are identified by the IC3D classification based on their phenotype, genotype and evidence gathered for their diagnosis. In practice, the ophthalmologist manages functional symptoms such as recurrent erosions, visual loss and amblyopia, photophobia, foreign body sensation, and sometimes pain and aesthetic concerns. Medical treatments consist of drops to promote healing, ointments, hyperosmotic agents and bandage contact lenses. Less invasive surgical treatments are used as second line therapy (phototherapeutic keratectomy, lamellar keratectomy). More invasive procedures may eventually be utilized (lamellar or penetrating keratoplasty). Anterior lamellar or endothelial keratoplasty are now preferred to penetrating keratoplasty, although the latter still remains the only possible option in some cases. Some rare dystrophies require coordinated and comprehensive medical care.
Collapse
Affiliation(s)
- J-L Bourges
- Université Paris Descartes, Sorbonne Paris Cité, 15, rue de l'École-de-Médecine, 75006 Paris, France; Ophthalmology Unit, Ophthalmology Service, Hôtel-Dieu, Hôpitaux Universitaires Paris Centre, Assistance publique-Hôpitaux de Paris, 1, place du Parvis-Notre-Dame, 75004 Paris, France; Équipe 17, Inserm UMRS 1138, Centre de Recherche des Cordeliers, 15, rue de l'École-de-Médecine, 75006 Paris, France.
| |
Collapse
|
18
|
In vivo confocal microscopy of pre-Descemet corneal dystrophy associated with X-linked ichthyosis: a case report. BMC Ophthalmol 2017; 17:29. [PMID: 28302098 PMCID: PMC5356324 DOI: 10.1186/s12886-017-0423-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 03/07/2017] [Indexed: 12/25/2022] Open
Abstract
Background Pre-Descemet corneal dystrophy (PDCD) is characterized by the presence of numerous, tiny, polymorphic opacities immediately anterior to Descemet membrane, which is a rare form of corneal stromal dystrophy and hard to be diagnosed. In vivo confocal microscopy (IVCM) is a useful tool to examine the minimal lesions of the cornea at the cellular level. In this article, we report a rare case of PDCD associated with X-linked ichthyosis and evaluate IVCM findings. Case presentation We present a 34-year-old male Chinese patient with PDCD associated with X-linked ichthyosis. Slit-lamp biomicroscopy showed the presence of tiny and pleomorphic opacities in the posterior stroma immediately anterior to Descemet membrane bilaterally. IVCM revealed regular distributed hyperreflective particles inside the enlarged and activated keratocytes in the posterior stroma. Hyperreflective particles were also observed dispersedly outside the keratocytes in the anterior stroma. Dermatological examination revealed that the skin over the patient’s entire body was dry and coarse, with thickening and scaling of the skin in the extensor side of the extremities. PCR results demonstrated that all ten exons and part flanking sequences of STS gene failed to produce any amplicons in the patient. Conclusions IVCM is useful for analyzing the living corneal structural changes in rare corneal dystrophies. We first reported the IVCM characteristics of PDCD associated with X-linked ichthyosis, which was caused by a deletion of the steroid sulfatase (STS) gene, confirmed by gene analysis.
Collapse
|
19
|
Yun JM, Na KS, Kim MS, Kim HS, Hwang HB. Two Cases of Pre-descemet Corneal Dystrophy Associated with X-linked Ichthyosis: A Case Report by Genetic Analysis. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2017. [DOI: 10.3341/jkos.2017.58.8.993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jun Myeong Yun
- Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Kyung Sun Na
- Department of Ophthalmology and Visual Science, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myung Shin Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Seung Kim
- Department of Ophthalmology and Visual Science, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyung Bin Hwang
- Department of Ophthalmology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| |
Collapse
|
20
|
Oliver VF, Vincent AL. The Genetics and Pathophysiology of IC3D Category 1 Corneal Dystrophies: A Review. Asia Pac J Ophthalmol (Phila) 2016; 5:272-81. [PMID: 27213768 DOI: 10.1097/apo.0000000000000205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Corneal dystrophies are a group of inherited disorders affecting the cornea, many of which lead to visual impairment. The International Committee for Classification of Corneal Dystrophies has established criteria to clarify the status of the various corneal dystrophies, which include the knowledge of the underlying genetics. In this review, we discuss the International Committee for Classification of Corneal Dystrophies category 1 (second edition) corneal dystrophies, for which a clear genetic link has been established. We highlight the various mechanisms underlying corneal dystrophy pathology, including structural disorganization, instability or maladhesion, aberrant protein stability and deposition, abnormal cellular proliferation or apoptosis, and dysfunction of normal enzymatic processes. Understanding these genetic mechanisms is essential for designing targets for therapeutic intervention, especially in the age of gene therapy and gene editing.
Collapse
Affiliation(s)
- Verity Frances Oliver
- From the *Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; and †Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | | |
Collapse
|
21
|
|
22
|
Hand JL, Runke CK, Hodge JC. The phenotype spectrum of X-linked ichthyosis identified by chromosomal microarray. J Am Acad Dermatol 2015; 72:617-27. [DOI: 10.1016/j.jaad.2014.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/29/2022]
|