1
|
Fine I, Boynton GM. A virtual patient simulation modeling the neural and perceptual effects of human visual cortical stimulation, from pulse trains to percepts. Sci Rep 2024; 14:17400. [PMID: 39075065 PMCID: PMC11286872 DOI: 10.1038/s41598-024-65337-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/19/2024] [Indexed: 07/31/2024] Open
Abstract
The field of cortical sight restoration prostheses is making rapid progress with three clinical trials of visual cortical prostheses underway. However, as yet, we have only limited insight into the perceptual experiences produced by these implants. Here we describe a computational model or 'virtual patient', based on the neurophysiological architecture of V1, which successfully predicts the perceptual experience of participants across a wide range of previously published human cortical stimulation studies describing the location, size, brightness and spatiotemporal shape of electrically induced percepts in humans. Our simulations suggest that, in the foreseeable future the perceptual quality of cortical prosthetic devices is likely to be limited by the neurophysiological organization of visual cortex, rather than engineering constraints.
Collapse
Affiliation(s)
- Ione Fine
- Department of Psychology, University of Washington, Seattle, 98195, USA.
- Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | | |
Collapse
|
2
|
Zhang Q, Yan K, Zheng X, Liu Q, Han Y, Liu Z. Research progress of photo-crosslink hydrogels in ophthalmology: A comprehensive review focus on the applications. Mater Today Bio 2024; 26:101082. [PMID: 38774449 PMCID: PMC11107262 DOI: 10.1016/j.mtbio.2024.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Hydrogel presents a three-dimensional polymer network with high water content. Over the past decade, hydrogel has developed from static material to intelligent material with controllable response. Various stimuli are involved in the formation of hydrogel network, among which photo-stimulation has attracted wide attention due to the advantages of controllable conditions, which has a good application prospect in the treatment of ophthalmic diseases. This paper reviews the application of photo-crosslink hydrogels in ophthalmology, focusing on the types of photo-crosslink hydrogels and their applications in ophthalmology, including drug delivery, tissue engineering and 3D printing. In addition, the limitations and future prospects of photo-crosslink hydrogels are also provided.
Collapse
Affiliation(s)
- Qinghe Zhang
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Ke Yan
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Xiaoqin Zheng
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Qiuping Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Yi Han
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Zuguo Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen Fujian 361005, China
| |
Collapse
|
3
|
Giacalone JC, Parkinson DH, Balikov DA, Rajesh CR. AMD and Stem Cell-Based Therapies. Int Ophthalmol Clin 2024; 64:21-33. [PMID: 38146879 PMCID: PMC10783850 DOI: 10.1097/iio.0000000000000510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Age-related macular degeneration (AMD) is a prevalent and complex disease leading to severe vision loss. Stem cells offer promising prospects for AMD treatment as they can be differentiated into critical retinal cell types that could replace lost host retinal cells or provide trophic support to promote host retinal cell survival. However, challenges such as immune rejection, concerns regarding tumorigenicity, and genomic integrity must be addressed. Clinical trials with stem cell-derived retinal pigment epithelial cells have shown preliminary safety in treating dry AMD, but improvements in manufacturing and surgical techniques cell delivery are needed. Late-stage AMD poses additional hurdles, possibly requiring multi-layered grafts. Advancements in automation technologies and gene correction strategies show potential to enhance iPSC-based therapies. Stem cell-based treatments offer hope for AMD management, but further research and optimization are essential for successful clinical implementation.
Collapse
Affiliation(s)
- Joseph C. Giacalone
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - David H. Parkinson
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Daniel A. Balikov
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - C. Rao Rajesh
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI, USA
- Division of Ophthalmology, Surgical Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Fine I, Boynton GM. Pulse trains to percepts: A virtual patient describing the perceptual effects of human visual cortical stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.532424. [PMID: 36993519 PMCID: PMC10055195 DOI: 10.1101/2023.03.18.532424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The field of cortical sight restoration prostheses is making rapid progress with three clinical trials of visual cortical prostheses underway. However, as yet, we have only limited insight into the perceptual experiences produced by these implants. Here we describe a computational model or 'virtual patient', based on the neurophysiological architecture of V1, which successfully predicts the perceptual experience of participants across a wide range of previously published cortical stimulation studies describing the location, size, brightness and spatiotemporal shape of electrically induced percepts in humans. Our simulations suggest that, in the foreseeable future the perceptual quality of cortical prosthetic devices is likely to be limited by the neurophysiological organization of visual cortex, rather than engineering constraints.
Collapse
|
5
|
Barker RA, Björklund A. Restorative cell and gene therapies for Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:211-226. [PMID: 36803812 DOI: 10.1016/b978-0-323-85555-6.00012-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
One of the core pathological features of Parkinson's disease (PD) is the loss of the dopaminergic nigrostriatal pathway which lies at the heart of many of the motor features of this condition as well as some of the cognitive problems. The importance of this pathological event is evident through the clinical benefits that are seen when patients with PD are treated with dopaminergic agents, at least in early-stage disease. However, these agents create problems of their own through stimulation of more intact dopaminergic networks within the central nervous system causing major neuropsychiatric problems including dopamine dysregulation. In addition, over time the nonphysiological stimulation of striatal dopamine receptors by l-dopa containing drugs leads to the genesis of l-dopa-induced dyskinesias that can become very disabling in many cases. As such, there has been much interest in trying to better reconstitute the dopaminergic nigrostriatal pathway using either factors to regrow it, cells to replace it, or gene therapies to restore dopamine transmission in the striatum. In this chapter, we lay out the rationale, history and current status of these different therapies as well as highlighting where the field is heading and what new interventions might come to clinic in the coming years.
Collapse
Affiliation(s)
- Roger A Barker
- Department of Clinical Neuroscience, Cambridge Centre for Brain Repair, Cambridge, United Kingdom.
| | - Anders Björklund
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Mattern L, Otten K, Miskey C, Fuest M, Izsvák Z, Ivics Z, Walter P, Thumann G, Johnen S. Molecular and Functional Characterization of BDNF-Overexpressing Human Retinal Pigment Epithelial Cells Established by Sleeping Beauty Transposon-Mediated Gene Transfer. Int J Mol Sci 2022; 23:12982. [PMID: 36361771 PMCID: PMC9656812 DOI: 10.3390/ijms232112982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 04/12/2024] Open
Abstract
More and more patients suffer from multifactorial neurodegenerative diseases, such as age-related macular degeneration (AMD). However, their pathological mechanisms are still poorly understood, which complicates the development of effective therapies. To improve treatment of multifactorial diseases, cell-based gene therapy can be used to increase the expression of therapeutic factors. To date, there is no approved therapy for dry AMD, including late-stage geographic atrophy. We present a treatment option for dry AMD that transfers the brain-derived neurotrophic factor (BDNF) gene into retinal pigment epithelial (RPE) cells by electroporation using the plasmid-based Sleeping Beauty (SB) transposon system. ARPE-19 cells and primary human RPE cells were co-transfected with two plasmids encoding the SB100X transposase and the transposon carrying a BDNF transcription cassette. We demonstrated efficient expression and secretion of BDNF in both RPE cell types, which were further increased in ARPE-19 cell cultures exposed to hydrogen peroxide. BDNF-transfected cells exhibited lower apoptosis rates and stimulated neurite outgrowth in human SH-SY5Y cells. This study is an important step in the development of a cell-based BDNF gene therapy that could be applied as an advanced therapy medicinal product to treat dry AMD or other degenerative retinal diseases.
Collapse
Affiliation(s)
- Larissa Mattern
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Katrin Otten
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Matthias Fuest
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Peter Walter
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Gabriele Thumann
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
7
|
Li L, Yu Y, Lin S, Hu J. Changes in best-corrected visual acuity in patients with dry age-related macular degeneration after stem cell transplantation: systematic review and meta-analysis. Stem Cell Res Ther 2022; 13:237. [PMID: 35672801 PMCID: PMC9172101 DOI: 10.1186/s13287-022-02931-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Background Stem cell transplantation may improve visual acuity in patients with dry age-related macular degeneration. Herein, we aimed to summarise the evidence on the risks and benefits of stem cell transplantation for improving visual acuity, including the risk of adverse events. Methods Data were obtained from the PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials databases, and each database was interrogated from the date of inception until 19 March 2022. The rates of visual acuity outcomes and adverse events associated with stem cell transplantation were examined. All statistical analyses were conducted using Review Manager 5.4. The study was registered with PROSPERO (CRD 42022322902). Results The analysis examined 10 studies (102 patients), including one and three, randomised and non-randomised clinical trials, and one and five, multicentre prospective and prospective clinical trials, respectively. Meta-analysis showed changes in best-corrected visual acuity in the study eyes after stem cell transplantation (6 months: risk ratio [RR] = 17.00, 95% confidence interval [CI] 6.08–47.56, P < 0.00001; 12 months: RR = 11.00, 95% CI 2.36–51.36, P = 0.002). Subgroup analysis showed that different stem cell types achieved better best-corrected visual acuity at post-operative 6 months, compared to that observed at baseline. Four cases of related ocular adverse events and no related systemic adverse events were reported. Conclusion This meta-analysis suggests that stem cell transplantation may improve best-corrected visual acuity in dry age-related macular degeneration, based on small sample sizes and fewer randomised controlled trials. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02931-y.
Collapse
Affiliation(s)
- Licheng Li
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Yang Yu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China. .,Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Jianmin Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China. .,The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
8
|
Hsu J, Garg SJ. Editorial: Introduction to Translational Research Section 2022. Curr Opin Ophthalmol 2022; 33:235-236. [PMID: 35616328 DOI: 10.1097/icu.0000000000000841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jason Hsu
- The R etina Service of Wills Eye Hospital, Wills Eye Physicians-Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|