1
|
Zhu C, Lv Y, Qian C, Ding Z, Jiao T, Gu X, Lu E, Wang L, Zhang F. Microstructures, mechanical, and biological properties of a novel Ti-6V-4V/zinc surface nanocomposite prepared by friction stir processing. Int J Nanomedicine 2018; 13:1881-1898. [PMID: 29636607 PMCID: PMC5880573 DOI: 10.2147/ijn.s154260] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The interaction between the material and the organism affects the survival rate of the orthopedic or dental implant in vivo. Friction stir processing (FSP) is considered a new solid-state processing technology for surface modification. Purpose This study aims to strengthen the surface mechanical properties and promote the osteogenic capacity of the biomaterial by constructing a Ti-6Al-4V (TC4)/zinc (Zn) surface nanocomposites through FSP. Methods FSP was used to modify the surface of TC4. The microstructures and mechanical properties were analyzed by scanning electron microscopy, transmission electron microscopy, nanoindentation and Vickers hardness. The biological properties of the modified surface were evaluated by the in vitro and in vivo study. Results The results showed that nanocrystalline and numerous β regions, grain boundary α phase, coarser acicular α phase and finer acicular martensite α′ appeared because of the severe plastic deformation caused by FSP, resulting in a decreased elastic modulus and an increased surface hardness. With the addition of Zn particles and the enhancement of hydrophilicity, the biocompatibility was greatly improved in terms of cell adhesion and proliferation. The in vitro osteogenic differentiation of rat bone marrow stromal cells and rapid in vivo osseointegration were enhanced on the novel TC4/Zn metal matrix nanocomposite surface. Conclusion These findings suggest that this novel TC4/Zn surface nanocomposite achieved by FSP has significantly improved mechanical properties and biocompatibility, in addition to promoting osseointegration and thus has potential for dental and orthopedic applications.
Collapse
Affiliation(s)
- Chenyuan Zhu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology
| | - Yuting Lv
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai.,College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Chao Qian
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology
| | - Zihao Ding
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai.,Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ting Jiao
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology
| | - Xiaoyu Gu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology
| | - Eryi Lu
- Department of Stomatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai
| | - Fuqiang Zhang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology
| |
Collapse
|
2
|
Yang J, Zheng M, Liu Q, Zhu M, Yang C, Zhang Y, Zhu Z. The Study of Titanium and Zirconium Ions in Water by MPT-LTQ Mass Spectrometry in Negative Mode. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101129. [PMID: 28954404 PMCID: PMC5664630 DOI: 10.3390/ijerph14101129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/03/2017] [Accepted: 09/18/2017] [Indexed: 01/14/2023]
Abstract
Microwave plasma torches (MPTs) can be used as simple and low power-consumption ambient ion sources. When MPT-mass spectrometry (MPT-MS) is applied in the detection of some metal elements, the metallic ions exhibit some novel features which are significantly different with those obtained by the traditional inductively coupled plasma (ICP)-mass spectrometry (ICP-MS) and may be helpful for metal element analysis. As the representative elements of group IVA, titanium and zirconium are both of importance and value in modern industry, and they have impacts on human health. Here, we first provide a study on the complex anions of titanium and zirconium in water by using the MPT as ion source and a linear ion trap mass spectrometer (LTQ-MS). These complex anions were produced in the plasma flame by an aqueous solution flowing through the central tube of the MPT, and were introduced into the inlet of the mass spectrometry working in negative ion mode to get the feature mass spectrometric signals. Moreover, the feature fragment patterns of these ions in multi-step collision- induced dissociation processes have been explained. Under the optimized conditions, the limit of detection (LOD) using the MS2 (the second tandem mass spectrometry) procedure was estimated to be at the level of 10 μg/L for titanium and 20 μg/L for zirconium with linear dynamics ranges that cover at least two orders of magnitude, i.e., between 0–500 μg/L and 20–200 μg/L, respectively. These experimental data demonstrated that the MPT-MS is a promising and useful tool in field analysis of titanium and zirconium ions in water, and can be applied in many fields, such as environmental control, hydrogeology, and water quality inspection. In addition, MPT-MS could also be used as a supplement of ICP-MS for the rapid and on-site analysis of metal ions.
Collapse
Affiliation(s)
- Junqing Yang
- Information Engineering Faculty, Jiangxi Modern Polytechnic College, Nanchang 330095, China;
| | - Mei Zheng
- School of Chemistry and Environmental Science, Shangrao Normal University, Jiangxi 334001, China; (M.Z.); (M.Z.); (C.Y.)
| | - Qiuju Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China; (Q.L.); (Y.Z.)
| | - Meiling Zhu
- School of Chemistry and Environmental Science, Shangrao Normal University, Jiangxi 334001, China; (M.Z.); (M.Z.); (C.Y.)
| | - Chushan Yang
- School of Chemistry and Environmental Science, Shangrao Normal University, Jiangxi 334001, China; (M.Z.); (M.Z.); (C.Y.)
| | - Yan Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China; (Q.L.); (Y.Z.)
| | - Zhiqiang Zhu
- School of Chemistry and Environmental Science, Shangrao Normal University, Jiangxi 334001, China; (M.Z.); (M.Z.); (C.Y.)
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China; (Q.L.); (Y.Z.)
- Correspondence:
| |
Collapse
|
3
|
Histomorphological and Histomorphometric Analyses of Grade IV Commercially Pure Titanium and Grade V Ti-6Al-4V Titanium Alloy Implant Substrates: An In Vivo Study in Dogs. IMPLANT DENT 2017; 25:650-5. [PMID: 27540838 DOI: 10.1097/id.0000000000000448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE To evaluate the bone response to grade IV commercially pure titanium (G4) relative to Ti-6Al-4V (G5). MATERIALS AND METHODS Implant surface topography was characterized by optical interferometry and scanning electron microscopy (SEM). Thirty-six implants (Signo Vinces, n = 18 per group) were installed in the radius of 18 dogs. The animals were killed at 1, 3, and 6 weeks, resulting in 6 implants per group and time in vivo for bone morphology, bone-to-implant contact (BIC), and bone area fraction occupancy (BAFO) evaluation. RESULTS SEM depicted a more uniform topography of G4 than G5. Surfaces were statistically homogeneous for Sa, Sq, and Sdr. At 1 week, new bone formation was observed within the healing connective tissue in contact with the implant surface. At 3 weeks, new bone in direct contact with the implant surface was observed at all bone regions. At 6 weeks, the healing chambers filled with woven bone depicted an onset of replacement by lamellar bone. No significant effect of substrate was detected. Time presented an effect on BIC and BAFO (P < 0.001). CONCLUSION Both titanium substrates were biocompatible and osseoconductive at the bone tissue level.
Collapse
|
4
|
Zhu C, Lv Y, Qian C, Qian H, Jiao T, Wang L, Zhang F. Proliferation and osteogenic differentiation of rat BMSCs on a novel Ti/SiC metal matrix nanocomposite modified by friction stir processing. Sci Rep 2016; 6:38875. [PMID: 27958394 PMCID: PMC5153627 DOI: 10.1038/srep38875] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/16/2016] [Indexed: 01/28/2023] Open
Abstract
The aims of this study were to fabricate a novel titanium/silicon carbide (Ti/SiC) metal matrix nanocomposite (MMNC) by friction stir processing (FSP) and to investigate its microstructure and mechanical properties. In addition, the adhesion, proliferation and osteogenic differentiation of rat bone marrow stromal cells (BMSCs) on the nanocomposite surface were investigated. The MMNC microstructure was observed by both scanning and transmission electron microscopy. Mechanical properties were characterized by nanoindentation and Vickers hardness testing. Integrin β1 immunofluorescence, cell adhesion, and MTT assays were used to evaluate the effects of the nanocomposite on cell adhesion and proliferation. Osteogenic and angiogenic differentiation were evaluated by alkaline phosphatase (ALP) staining, ALP activity, PCR and osteocalcin immunofluorescence. The observed microstructures and mechanical properties clearly indicated that FSP is a very effective technique for modifying Ti/SiC MMNC to contain uniformly distributed nanoparticles. In the interiors of recrystallized grains, characteristics including twins, fine recrystallized grains, and dislocations formed concurrently. Adhesion, proliferation, and osteogenic and angiogenic differentiation of rat BMSCs were all enhanced on the novel Ti/SiC MMNC surface. In conclusion, nanocomposites modified using FSP technology not only have superior mechanical properties under stress-bearing conditions but also provide improved surface and physicochemical properties for cell attachment and osseointegration.
Collapse
Affiliation(s)
- Chenyuan Zhu
- Department of Prosthodontics, Ninth People’s Hospital, affiliated to Shanghai JiaoTong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai, 200011, PR China
| | - Yuting Lv
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Chao Qian
- Department of Prosthodontics, Ninth People’s Hospital, affiliated to Shanghai JiaoTong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai, 200011, PR China
| | - Haixin Qian
- Department of Prosthodontics, Ninth People’s Hospital, affiliated to Shanghai JiaoTong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai, 200011, PR China
| | - Ting Jiao
- Department of Prosthodontics, Ninth People’s Hospital, affiliated to Shanghai JiaoTong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai, 200011, PR China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Fuqiang Zhang
- Department of Prosthodontics, Ninth People’s Hospital, affiliated to Shanghai JiaoTong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639, Zhizaoju Road, Shanghai, 200011, PR China
| |
Collapse
|
5
|
Akhavan B, Wise SG, Bilek MMM. Substrate-Regulated Growth of Plasma-Polymerized Films on Carbide-Forming Metals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10835-10843. [PMID: 27676094 DOI: 10.1021/acs.langmuir.6b02901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although plasma polymerization is traditionally considered as a substrate-independent process, we present evidence that the propensity of a substrate to form carbide bonds regulates the growth mechanisms of plasma polymer (PP) films. The manner by which the first layers of PP films grow determines the adhesion and robustness of the film. Zirconium, titanium, and silicon substrates were used to study the early stages of PP film formation from a mixture of acetylene, nitrogen, and argon precursor gases. The correlation of initial growth mechanisms with the robustness of the films was evaluated through incubation of coated substrates in simulated body fluid (SBF) at 37° for 2 months. It was demonstrated that the excellent zirconium/titanium-PP film adhesion is linked to the formation of metallic carbide and oxycarbide bonds during the initial stages of film formation, where a 2D-like, layer-by-layer (Frank-van der Merwe) manner of growth was observed. On the contrary, the lower propensity of the silicon surface to form carbides leads to a 3D, island-like (Volmer-Weber) growth mode that creates a sponge-like interphase near the substrate, resulting in inferior adhesion and poor film stability in SBF. Our findings shed light on the growth mechanisms of the first layers of PP films and challenge the property of substrate independence typically attributed to plasma polymerized coatings.
Collapse
Affiliation(s)
- Behnam Akhavan
- School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
| | - Steven G Wise
- The Heart Research Institute , Sydney, New South Wales 2042, Australia
- Sydney Medical School, University of Sydney , Sydney, New South Wales 2006, Australia
| | - Marcela M M Bilek
- School of Physics, University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|
6
|
Yeo GC, Santos M, Kondyurin A, Liskova J, Weiss AS, Bilek MMM. Plasma-Activated Tropoelastin Functionalization of Zirconium for Improved Bone Cell Response. ACS Biomater Sci Eng 2016; 2:662-676. [PMID: 33465866 DOI: 10.1021/acsbiomaterials.6b00049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanical strength, durability, corrosion resistance, and biocompatibility of metal alloys based on zirconium (Zr) and titanium (Ti) make them desirable materials for orthopedic implants. However, as bioinert metals, they do not actively promote bone formation and integration. Here we report a plasma coating process for improving integration of such metal implants with local bone tissue. The coating is a stable carbon-based plasma polymer layer that increased surface wettability by 28%, improved surface elasticity to the range exhibited by natural bone, and additionally covalently bound the extracellular matrix protein, tropoelastin, in an active conformation. The thus biofunctionalized material was significantly more resistant to medical-grade sterilization by steam, autoclaving or gamma-ray irradiation, retaining >60% of the adhered tropoelastin molecules and preserving full bioactivity. The interface of the coating and metal was robust so as to resist delamination during surgical insertion and in vivo deployment, and the plasma process employed was utilized to also coat the complex 3D geometries typical of orthopedic implants. Osteoblast-like osteosarcoma cells cultured on the biofunctionalized Zr surface exhibited a significant 30% increase in adhesion and up to 70% improvement in proliferation. Cells on these materials also showed significant early stage up-regulation of bone marker expression (alkaline phosphatase, 1.8 fold; osteocalcin, 1.4 fold), and sustained up-regulation of these genes (alkaline phosphatase, 1.3 fold; osteocalcin, 1.2 fold) in osteogenic conditions. In addition, alkaline phosphatase production significantly increased (2-fold) on the functionalized surfaces, whereas bone mineral deposition increased by 30% above background levels compared to bare Zr. These findings have the potential to be readily translated to the development of improved Zr and Ti-based implants for accelerated bone repair.
Collapse
Affiliation(s)
| | - Miguel Santos
- The Heart Research Institute, 7 Eliza Street, Newtown, New South Wales 2050, Australia
| | | | - Jana Liskova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Národní 1009/3, Prague 14220, Czech Republic
| | | | | |
Collapse
|