1
|
Chen KT, Huang JW, Lin WT, Kuo TY, Chien CS, Chang CP, Lin YD. Effects of Micro-Arc Oxidation Discharge Parameters on Formation and Biomedical Properties of Hydroxyapatite-Containing Flower-like Structure Coatings. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010057. [PMID: 36614396 PMCID: PMC9821538 DOI: 10.3390/ma16010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 05/12/2023]
Abstract
The micro-arc oxidation (MAO) process was used to prepare hydroxyapatite-containing flower-like structure coatings on commercially pure titanium substrates with various values of the applied voltage (330, 390, 450 V), applied current (0.4, 0.5, 0.6 A), and duration time (1, 3, 5 min). It was found that the surface morphology of the coatings was determined primarily by the applied voltage. A voltage of 330 V yielded a flower-like/plate-like structure, while voltages of 390 V and 450 V produced a flower-like structure and a porous morphology, respectively. The applied current and duration time mainly affected the coating formation speed and petal size of the flower-like structures, respectively. The coatings prepared using voltages of 330 V and 390 V (0.6 A, 5 min) both contained Ti, TiO2-A (anatase), TiO2-R (rutile), DCPD (CaHPO4·2H2O, calcium hydrogen phosphate), and hydroxyapatite (HA). However, the latter coating contained less DCPD and had a higher HA/DCPD ratio and a Ca/P ratio closer to the ideal value of HA. The coating prepared with a voltage of 450 V consisted mainly of Ti, TiO2-A, TiO2-R, and CaTiO3. For the coatings prepared with a voltage of 390 V, the flower-like structures consisted mainly of HA-containing compounds. DCPD plate-like structures were observed either between the HA-containing flower-like structures (330 V samples) or within the flower-like structures themselves (390 V samples). The coating surfaces with flower-like/plate-like or flower-like structures had a greater roughness, which increased their hydrophilicity and resulted in superior bioactivity (SBF immersion) and biocompatibility (MG-63 cell culture). The optimal biomedical performance was found in the 390 V coating due to its flower-like structure and high HA/DCPD ratio.
Collapse
Affiliation(s)
- Kuan-Ting Chen
- Department of Orthopaedics, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan 710, Taiwan
| | - Jun-Wei Huang
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, 1 Nan-Tai St., Tainan 710, Taiwan
| | - Wei-Ting Lin
- Department of Orthopaedics, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan 710, Taiwan
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, 1 Nan-Tai St., Tainan 710, Taiwan
| | - Tsung-Yuan Kuo
- Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, 1 Nan-Tai St., Tainan 710, Taiwan
- Correspondence: (T.-Y.K.); (C.-S.C.)
| | - Chi-Sheng Chien
- Department of Orthopaedics, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan 710, Taiwan
- Correspondence: (T.-Y.K.); (C.-S.C.)
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan City 710, Taiwan
| | - Yung-Ding Lin
- School of Intelligent Engineering, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|