1
|
Iezzi G, Zavan B, Petrini M, Ferroni L, Pierfelice TV, D'Amora U, Ronca A, D'Amico E, Mangano C. 3D printed dental implants with a porous structure: The in vitro response of osteoblasts, fibroblasts, mesenchymal stem cells, and monocytes. J Dent 2024; 140:104778. [PMID: 37951493 DOI: 10.1016/j.jdent.2023.104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
AIMS The first aim of this study was to characterize the surface topography of a novel 3D-printed dental implant at the micro- and macro-level. Its second aim was to evaluate the osteogenic, angiogenic, and immunogenic responses of human oral osteoblasts (hOBs), gingival fibroblasts (hGFs), mesenchymal stem cells (hAD-MSCs), and monocytes to this novel implant surface. METHODS A 3D-printed Ti-6Al-4 V implant was produced by selective laser melting and subjected to organic acid etching (TEST). It was then compared to a machined surface (CTRL). Its biological properties were evaluated via cell proliferation assays, morphological observations, gene expression analyses, mineralization assessments, and collagen quantifications. RESULTS Scanning electron microscopy analysis showed that the TEST group was characterized by a highly interconnected porous architecture and a roughed surface. The morphological observations showed good adhesion of cells cultured on the TEST surface, with a significant increase in hOB growth. Similarly, the gene expression analysis showed significantly higher levels of osseointegration biomarkers. Picrosirius staining showed a slight increase in collagen production in the TEST group compared to the CTRL group. hAD-MSCs showed an increase in endothelial and osteogenic commitment-related markers. Monocytes showed increased mRNA synthesis related to the M2 (anti-inflammatory) macrophagic phenotype. CONCLUSIONS Considering the higher interaction with hOBs, hGFs, hAD-MSCs, and monocytes, the prepared 3D-printed implant could be used for future clinical applications. CLINICAL RELEVANCE This study demonstrated the excellent biological response of various cells to the porous surface of the novel 3D-printed implant.
Collapse
Affiliation(s)
- Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti 66100, Italy
| | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, Ferrara 44121, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti 66100, Italy
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Ravenna 48033, Italy
| | - Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti 66100, Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials National Research Council (IPCB-CNR), Naples 80125, Italy
| | - Emira D'Amico
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini, 31, Chieti 66100, Italy.
| | | |
Collapse
|
2
|
Huang S, Wei H, Li D. Additive manufacturing technologies in the oral implant clinic: A review of current applications and progress. Front Bioeng Biotechnol 2023; 11:1100155. [PMID: 36741746 PMCID: PMC9895117 DOI: 10.3389/fbioe.2023.1100155] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Additive manufacturing (AM) technologies can enable the direct fabrication of customized physical objects with complex shapes, based on computer-aided design models. This technology is changing the digital manufacturing industry and has become a subject of considerable interest in digital implant dentistry. Personalized dentistry implant treatments for individual patients can be achieved through Additive manufacturing. Herein, we review the applications of Additive manufacturing technologies in oral implantology, including implant surgery, and implant and restoration products, such as surgical guides for implantation, custom titanium meshes for bone augmentation, personalized or non-personalized dental implants, custom trays, implant casts, and implant-support frameworks, among others. In addition, this review also focuses on Additive manufacturing technologies commonly used in oral implantology. Stereolithography, digital light processing, and fused deposition modeling are often used to construct surgical guides and implant casts, whereas direct metal laser sintering, selective laser melting, and electron beam melting can be applied to fabricate dental implants, personalized titanium meshes, and denture frameworks. Moreover, it is sometimes required to combine Additive manufacturing technology with milling and other cutting and finishing techniques to ensure that the product is suitable for its final application.
Collapse
Affiliation(s)
| | - Hongbo Wei
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dehua Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Raheem AA, Hameed P, Whenish R, Elsen RS, G A, Jaiswal AK, Prashanth KG, Manivasagam G. A Review on Development of Bio-Inspired Implants Using 3D Printing. Biomimetics (Basel) 2021; 6:65. [PMID: 34842628 PMCID: PMC8628669 DOI: 10.3390/biomimetics6040065] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023] Open
Abstract
Biomimetics is an emerging field of science that adapts the working principles from nature to fine-tune the engineering design aspects to mimic biological structure and functions. The application mainly focuses on the development of medical implants for hard and soft tissue replacements. Additive manufacturing or 3D printing is an established processing norm with a superior resolution and control over process parameters than conventional methods and has allowed the incessant amalgamation of biomimetics into material manufacturing, thereby improving the adaptation of biomaterials and implants into the human body. The conventional manufacturing practices had design restrictions that prevented mimicking the natural architecture of human tissues into material manufacturing. However, with additive manufacturing, the material construction happens layer-by-layer over multiple axes simultaneously, thus enabling finer control over material placement, thereby overcoming the design challenge that prevented developing complex human architectures. This review substantiates the dexterity of additive manufacturing in utilizing biomimetics to 3D print ceramic, polymer, and metal implants with excellent resemblance to natural tissue. It also cites some clinical references of experimental and commercial approaches employing biomimetic 3D printing of implants.
Collapse
Affiliation(s)
- Ansheed A. Raheem
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Pearlin Hameed
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Ruban Whenish
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Renold S. Elsen
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India;
| | - Aswin G
- School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India;
| | - Amit Kumar Jaiswal
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| | - Konda Gokuldoss Prashanth
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
- Erich Schmid Institute of Materials Science, Austrian Academy of Science, Jahnstrasse 12, 8700 Leoben, Austria
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India; (A.A.R.); (P.H.); (R.W.); (A.K.J.); (G.M.)
| |
Collapse
|
4
|
Three-dimensional finite element analysis of two angled narrow-diameter implant designs for an all-on-4 prosthesis. J Prosthet Dent 2019; 124:477-484. [PMID: 31810614 DOI: 10.1016/j.prosdent.2019.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 11/23/2022]
Abstract
STATEMENT OF PROBLEM Although the concept of angulated dental implants has been used for the rehabilitation of the completely edentulous maxilla, its use has yet to be validated with narrow-diameter implants. Proper estimation of narrow-diameter implant dimensions and angulations is essential for the correct use of these implants. PURPOSE The purpose of this 3D finite element analysis study was to compare the stress levels and distributions of 2 narrow-diameter angled implant arrangements supporting a maxillary fixed complete prosthesis. MATERIAL AND METHODS Two commercially available narrow-diameter implants (3.5×11.5 mm, Unitite Prime; 2.9×11.5 mm, Unitite Slim) were compared for their performances under axial and oblique loading (masticatory force: 100 N) in simulated situations of all-on-4 treatment (2 parallel anterior implants perpendicular to the bone crest and 2 posterior implants angled at 30 degrees). An edentulous maxilla model generated from computed tomography and a prosthesis parametric computer-aided design (CAD) model were combined with computational models of implants and prosthetic components to represent implant-supported maxillary fixed complete prostheses. A condition of complete osseointegration was assumed. Peri-implant bone was analyzed by the Mohr-Coulomb criterion. Implants, abutments, and screws were analyzed by the von Mises criterion, and frameworks by the Rankine criterion. RESULTS The 3.5-mm model showed higher axial load values for peri-implant bone, implants, and abutments than the 2.9-mm model. As for oblique load, values were higher for right-sided peri-implant bone, implants, abutments, and frameworks in the 3.5-mm model than in the 2.9-mm model. The 3.5-mm model had a 16% lower risk of peri-implant bone loss for the axial load and 4% for the oblique load. CONCLUSIONS The biomechanical behavior of an angled 2.9-mm implant was comparable with that of a 3.5-mm implant for an all-on-4 prosthesis. However, despite a lower risk of peri-implant bone loss, the 3.5-mm model had higher peak stress on implants and abutments than the 2.9-mm model.
Collapse
|
5
|
Schiegnitz E, Al‐Nawas B. Narrow‐diameter implants: A systematic review and meta‐analysis. Clin Oral Implants Res 2018; 29 Suppl 16:21-40. [DOI: 10.1111/clr.13272] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Eik Schiegnitz
- Department of Oral and Maxillofacial Surgery, Plastic Surgery University Medical Centre of the Johannes Gutenberg‐University Mainz Mainz Germany
| | - Bilal Al‐Nawas
- Department of Oral and Maxillofacial Surgery, Plastic Surgery University Medical Centre of the Johannes Gutenberg‐University Mainz Mainz Germany
| |
Collapse
|
6
|
Wang W, Yu H, Liu Y, Jiang X, Gao B. Trueness analysis of zirconia crowns fabricated with 3-dimensional printing. J Prosthet Dent 2018; 121:285-291. [PMID: 30017167 DOI: 10.1016/j.prosdent.2018.04.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
STATEMENT OF PROBLEM The primary manufacturing method of zirconia ceramic crowns is computer-aided design and computer-aided manufacture (CAD-CAM), but a disadvantage of this technique is material waste. Three-dimensional (3D) printing, which has been recently introduced into dentistry, has improved the processing of polymers and metals, but not yet of ceramic crowns. PURPOSE The purpose of this in vitro study was to evaluate the 3D trueness of zirconia crowns fabricated by 3D printing to investigate the potential application of this technology in dental ceramic restorations. MATERIAL AND METHODS A typodont tooth was prepared for a ceramic crown, and a digital crown was designed using the CAD software. The digital crown was processed either with a 3D-printing system or with a dental milling system. The crowns were scanned using a dental laboratory scanner, and the data collected for each crown were divided into 4 parts (the external surface, intaglio surface, marginal area, and intaglio occlusal surface). Finally, the trueness of each part was determined using the 3D inspection software. The 3D trueness of the crowns fabricated by either 3D printing or milling was compared by a 1-sided test (α=.05). RESULTS The trueness of the external surface, intaglio surface, marginal area, and intaglio occlusal surface of the 3D-printed crowns was no worse than the corresponding trueness of the CAD-CAM crowns (P<.05). CONCLUSIONS Zirconia crowns produced by 3D printing meet the trueness requirements, and 3D printing may be suitable for fabricating zirconia crowns.
Collapse
Affiliation(s)
- Weina Wang
- Doctoral student, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Hai Yu
- Doctoral student, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Yifan Liu
- Graduate student, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China
| | - Xinlei Jiang
- Doctoral student, School of Foreign Studies, Xi'an Jiaotong University, Xi'an, PR China
| | - Bo Gao
- Professor, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
7
|
Almufleh B, Emami E, Alageel O, de Melo F, Seng F, Caron E, Nader SA, Al-Hashedi A, Albuquerque R, Feine J, Tamimi F. Patient satisfaction with laser-sintered removable partial dentures: A crossover pilot clinical trial. J Prosthet Dent 2018; 119:560-567.e1. [DOI: 10.1016/j.prosdent.2017.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
8
|
Raes F, Eccellente T, Lenzi C, Ortolani M, Luongo G, Mangano C, Mangano F. Immediate functional loading of single implants: a multicenter study with 4 years of follow-up. J Dent Res Dent Clin Dent Prospects 2018; 12:26-37. [PMID: 29732018 PMCID: PMC5928471 DOI: 10.15171/joddd.2018.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/11/2018] [Indexed: 11/19/2022] Open
Abstract
Background. In the current scientific literature there are only few studies on the immediate functional loading of single implants. The aim of the present present study was to evaluate the 4-year survival rate, complication rate and peri-implant marginal bone loss (PIMBL) of immediately loaded single implants inserted in healed ridges and fresh post-extraction sites.
Methods. Six centers were involved in this prospective study. The surgical and prosthetic protocol was defined in detail, before the start of recruiting patients. Recruitment of patients and performance of surgeries took place between February 2012 and February 2013. Criteria for inclusion were single-tooth gaps in healed ridges and fresh post-extraction sockets. All the fixtures (Anyridge®, Megagen Corporation, Gyeongbuk, South Korea) were functionally loaded immediately after insertion and followed for a period of 4 years. Outcome measures were implant survival, complications and PIMBL.
Results. Forty-six patients (18‒73 years of age) were selected. In total, 57 fixtures were placed (10 in fresh post-extraction sockets). After 4 years of functional loading, only one fixture was lost; therefore, high survival rates (97.6% patient-based; 98.1% implant-based) were reported. In addition, a limited incidence of biologic (4.8% patient-based; 3.8% implant-based) and prosthetic (9.7% patient-based; 7.6% implant-based) complications was reported. The overall 4-year PIMBL amounted to 0.38±0.21 mm (healed ridges: 0.4±0.21 mm; fresh post-extraction sockets: 0.33±0.20 mm).
Conclusion. Loading single implants immediately seems to be a highly successful treatment modality. However, long-term data are needed to confirm these positive outcomes.
Collapse
Affiliation(s)
- Filiep Raes
- Professor, Department of Periodontology and Oral Implantology, University of Ghent, Belgium
| | | | | | | | - Giuseppe Luongo
- Professor, Department of Oral and Maxillofacial Surgery, Dental School, University of Naples, Italy
| | - Carlo Mangano
- Professor, Department of Dental Sciences, University Vita Salute San Raffaele, Milan, Italy
| | - Francesco Mangano
- Lecturer, Department of Surgical and Morphological Science, Dental School, University of Varese, Italy
| |
Collapse
|
9
|
Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, Symes R, Tieppo M, Collins C, Cao A, Markwell D, Ostrikov KK, Bazaka K. Metallic Biomaterials: Current Challenges and Opportunities. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E884. [PMID: 28773240 PMCID: PMC5578250 DOI: 10.3390/ma10080884] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/14/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
Abstract
Metallic biomaterials are engineered systems designed to provide internal support to biological tissues and they are being used largely in joint replacements, dental implants, orthopaedic fixations and stents. Higher biomaterial usage is associated with an increased incidence of implant-related complications due to poor implant integration, inflammation, mechanical instability, necrosis and infections, and associated prolonged patient care, pain and loss of function. In this review, we will briefly explore major representatives of metallic biomaterials along with the key existing and emerging strategies for surface and bulk modification used to improve biointegration, mechanical strength and flexibility of biometals, and discuss their compatibility with the concept of 3D printing.
Collapse
Affiliation(s)
- Karthika Prasad
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organization, P.O. Box 218, Lindfield, NSW 2070, Australia.
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Olha Bazaka
- College of Science and Engineering, Technology and Engineering, James Cook University, Townsville, QLD 4810, Australia.
| | - Ming Chua
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Madison Rochford
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Liam Fedrick
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Jordan Spoor
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Richard Symes
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Marcus Tieppo
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Cameron Collins
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Alex Cao
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - David Markwell
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Kostya Ken Ostrikov
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organization, P.O. Box 218, Lindfield, NSW 2070, Australia.
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Kateryna Bazaka
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organization, P.O. Box 218, Lindfield, NSW 2070, Australia.
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- College of Science and Engineering, Technology and Engineering, James Cook University, Townsville, QLD 4810, Australia.
| |
Collapse
|
10
|
Pieri F, Forlivesi C, Caselli E, Corinaldesi G. Narrow- (3.0 mm) Versus Standard-Diameter (4.0 and 4.5 mm) Implants for Splinted Partial Fixed Restoration of Posterior Mandibular and Maxillary Jaws: A 5-Year Retrospective Cohort Study. J Periodontol 2017; 88:338-347. [DOI: 10.1902/jop.2016.160510] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
|
12
|
From Guided Surgery to Final Prosthesis with a Fully Digital Procedure: A Prospective Clinical Study on 15 Partially Edentulous Patients. Int J Dent 2016; 2016:7358423. [PMID: 27493665 PMCID: PMC4963589 DOI: 10.1155/2016/7358423] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/19/2016] [Indexed: 01/20/2023] Open
Abstract
Scope. To demonstrate guided implant placement and the application of fixed, implant-supported prosthetic restorations with a fully digital workflow. Methods. Over a 2-year period, all patients with partial edentulism of the posterior maxilla, in need of fixed implant-supported prostheses, were considered for inclusion in this study. The protocol required intraoral scanning and cone beam computed tomography (CBCT), the superimposition of dental-gingival information on bone anatomy, surgical planning, 3D-printed teeth-supported surgical templates, and modelling and milling of polymethylmethacrylate (PMMA) temporaries for immediate loading. After 3 months, final optical impression was taken and milled zirconia frameworks and 3D-printed models were fabricated. The frameworks were veneered with ceramic and delivered to the patients. Results. Fifteen patients were selected for this study. The surgical templates were stable. Thirty implants were placed (BTK Safe®, BTK, Vicenza, Italy) and immediately loaded with PMMA temporaries. After 3 months, the temporaries were replaced by the final restorations in zirconia-ceramic, fabricated with a fully digital process. At 6 months, none of the patients reported any biological or functional problems with the implant-supported prostheses. Conclusions. The present procedure for fully digital planning of implants and short-span fixed implant-supported restorations has been shown to be reliable. Further studies are needed to validate these results.
Collapse
|
13
|
3D Printing/Additive Manufacturing Single Titanium Dental Implants: A Prospective Multicenter Study with 3 Years of Follow-Up. Int J Dent 2016; 2016:8590971. [PMID: 27313616 PMCID: PMC4903129 DOI: 10.1155/2016/8590971] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/14/2016] [Accepted: 05/05/2016] [Indexed: 11/18/2022] Open
Abstract
This prospective 3-year follow-up clinical study evaluated the survival and success rates of 3DP/AM titanium dental implants to support single implant-supported restorations. After 3 years of loading, clinical, radiographic, and prosthetic parameters were assessed; the implant survival and the implant-crown success were evaluated. Eighty-two patients (44 males, 38 females; age range 26–67 years) were enrolled in the present study. A total of 110 3DP/AM titanium dental implants (65 maxilla, 45 mandible) were installed: 75 in healed alveolar ridges and 35 in postextraction sockets. The prosthetic restorations included 110 single crowns (SCs). After 3 years of loading, six implants failed, for an overall implant survival rate of 94.5%; among the 104 surviving implant-supported restorations, 6 showed complications and were therefore considered unsuccessful, for an implant-crown success of 94.3%. The mean distance between the implant shoulder and the first visible bone-implant contact was 0.75 mm (±0.32) and 0.89 (±0.45) after 1 and 3 years of loading, respectively. 3DP/AM titanium dental implants seem to represent a successful clinical option for the rehabilitation of single-tooth gaps in both jaws, at least until 3-year period. Further, long-term clinical studies are needed to confirm the present results.
Collapse
|
14
|
The Effect of Crown-to-Implant Ratio on the Clinical Performance of Extra-Short Locking-Taper Implants. J Craniofac Surg 2016; 27:675-81. [DOI: 10.1097/scs.0000000000002562] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
15
|
Kajima Y, Takaichi A, Nakamoto T, Kimura T, Yogo Y, Ashida M, Doi H, Nomura N, Takahashi H, Hanawa T, Wakabayashi N. Fatigue strength of Co-Cr-Mo alloy clasps prepared by selective laser melting. J Mech Behav Biomed Mater 2016; 59:446-458. [PMID: 26974490 DOI: 10.1016/j.jmbbm.2016.02.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/12/2016] [Accepted: 02/26/2016] [Indexed: 11/18/2022]
Abstract
We aimed to investigate the fatigue strength of Co-Cr-Mo clasps for removable partial dentures prepared by selective laser melting (SLM). The Co-Cr-Mo alloy specimens for tensile tests (dumbbell specimens) and fatigue tests (clasp specimens) were prepared by SLM with varying angles between the building and longitudinal directions (i.e., 0° (TL0, FL0), 45° (TL45, FL45), and 90° (TL90, FL90)). The clasp specimens were subjected to cyclic deformations of 0.25mm and 0.50mm for 10(6) cycles. The SLM specimens showed no obvious mechanical anisotropy in tensile tests and exhibited significantly higher yield strength and ultimate tensile strength than the cast specimens under all conditions. In contrast, a high degree of anisotropy in fatigue performance associated with the build orientation was found. For specimens under the 0.50mm deflection, FL90 exhibited significantly longer fatigue life (205,418 cycles) than the cast specimens (112,770 cycles). In contrast, the fatigue lives of FL0 (28,484 cycles) and FL45 (43,465 cycles) were significantly shorter. The surface roughnesses of FL0 and FL45 were considerably higher than those of the cast specimens, whereas there were no significant differences between FL90 and the cast specimens. Electron backscatter diffraction (EBSD) analysis indicated the grains of FL0 showed preferential close to <001> orientation of the γ phase along the normal direction to the fracture surface. In contrast, the FL45 and FL90 grains showed no significant preferential orientation. Fatigue strength may therefore be affected by a number of factors, including surface roughness and crystal orientation. The SLM process is a promising candidate for preparing tough removable partial denture frameworks, as long as the appropriate build direction is adopted.
Collapse
Affiliation(s)
- Yuka Kajima
- Removable Partial Prosthodontics, Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Atsushi Takaichi
- Removable Partial Prosthodontics, Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Takayuki Nakamoto
- Machining & Molding Section, Technology Research Institute of Osaka Prefecture, 2-7-1 Ayumino, Izumi, Osaka 594-1157, Japan
| | - Takahiro Kimura
- Machining & Molding Section, Technology Research Institute of Osaka Prefecture, 2-7-1 Ayumino, Izumi, Osaka 594-1157, Japan
| | - Yoshiaki Yogo
- Removable Partial Prosthodontics, Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Maki Ashida
- Metallic Biomaterials, Biomedical Materials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Hisashi Doi
- Metallic Biomaterials, Biomedical Materials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Naoyuki Nomura
- Metallurgy, Materials Science and Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Hidekazu Takahashi
- Oral Biomaterials Development Engineering, Course for Oral Health Engineering, School of Oral Health Care Sciences, Faculty of Dentistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Takao Hanawa
- Metallic Biomaterials, Biomedical Materials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Noriyuki Wakabayashi
- Removable Partial Prosthodontics, Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
16
|
Munro NH, McGrath KM. Advances in techniques and technologies for bone implants. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2015. [DOI: 10.1680/bbn.14.00015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Mangano FG, Caprioglio A, Levrini L, Farronato D, Zecca PA, Mangano C. Immediate Loading of Mandibular Overdentures Supported by One-Piece, Direct Metal Laser Sintering Mini-Implants: A Short-Term Prospective Clinical Study. J Periodontol 2015; 86:192-200. [DOI: 10.1902/jop.2014.140343] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Maxillary overdentures supported by four splinted direct metal laser sintering implants: a 3-year prospective clinical study. Int J Dent 2014; 2014:252343. [PMID: 25580124 PMCID: PMC4279819 DOI: 10.1155/2014/252343] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/26/2014] [Indexed: 11/28/2022] Open
Abstract
Purpose. Nowadays, the advancements in direct metal laser sintering (DMLS) technology allow the fabrication of titanium dental implants. The aim of this study was to evaluate implant survival, complications, and peri-implant marginal bone loss of DMLS implants used to support bar-retained maxillary overdentures. Materials and Methods. Over a 2-year period, 120 implants were placed in the maxilla of 30 patients (18 males, 12 females) to support bar-retained maxillary overdentures (ODs). Each OD was supported by 4 implants splinted by a rigid cobalt-chrome bar. At each annual follow-up session, clinical and radiographic parameters were assessed. The outcome measures were implant failure, biological and prosthetic complications, and peri-implant marginal bone loss (distance between the implant shoulder and the first visible bone-to-implant contact, DIB). Results. The 3-year implant survival rate was 97.4% (implant-based) and 92.9% (patient-based). Three implants failed. The incidence of biological complication was 3.5% (implant-based) and 7.1% (patient-based). The incidence of prosthetic complication was 17.8% (patient-based). No detrimental effects on marginal bone level were evidenced. Conclusions. The use of 4 DMLS titanium implants to support bar-retained maxillary ODs seems to represent a safe and successful procedure. Long-term clinical studies on a larger sample of patients are needed to confirm these results.
Collapse
|
19
|
Direct metal laser sintering titanium dental implants: a review of the current literature. Int J Biomater 2014; 2014:461534. [PMID: 25525434 PMCID: PMC4267165 DOI: 10.1155/2014/461534] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/16/2014] [Accepted: 11/06/2014] [Indexed: 12/14/2022] Open
Abstract
Statement of Problem. Direct metal laser sintering (DMLS) is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D) computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs); to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS) was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed.
Collapse
|