1
|
Solanki R, Zubbair Malik M, Alankar B, Ahmad FJ, Dohare R, Chauhan R, Kesharwani P, Kaur H. Identification of novel biomarkers and potential molecular targets for uterine cancer using network-based approach. Pathol Res Pract 2024; 260:155431. [PMID: 39029376 DOI: 10.1016/j.prp.2024.155431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024]
Abstract
A better understanding of incidences at the cellular level in uterine cancer is necessary for its effective treatment and favourable prognosis. Till date, it lacks appropriate molecular target-based treatment because of unknown molecular mechanisms that proceed to cancer and no drug has shown the required results of treatment with less severe side effects. Uterine Cancer is one of the top five cancer diagnoses and among the ten most common death-causing cancer in the United States of America. There is no FDA-approved drug for it yet. Therefore, it became necessary to identify the molecular targets for molecular targeted therapy of this widely prevalent cancer type. For this study, we used a network-based approach to the list of the deregulated (both up and down-regulated) genes taking adjacent p-Value ≤ 0.05 as significance cut off for the mRNA data of uterine cancer. We constructed the protein-protein interaction (PPI) network and analyzed the degree, closeness, and betweenness centrality-like topological properties of the PPI network. Then we traced the top 30 genes listed from each topological property to find the key regulators involved in the endometrial cancer (ECa) network. We then detected the communities and sub-communities from the PPI network using the Cytoscape network analyzer and Louvain modularity optimization method. A set of 26 (TOP2A, CENPE, RAD51, BUB1, BUB1B, KIF2C, KIF23, KIF11, KIF20A, ASPM, AURKA, AURKB, PLK1, CDC20, CDKN2A, EZH2, CCNA2, CCNB1, CDK1, FGF2, PRKCA, PGR, CAMK2A, HPGDS, and CDCA8) genes were found to be key genes of ECa regulatory network altered in disease state and might be playing the regulatory role in complex ECa network. Our study suggests that among these genes, KIF11 and H PGDS appeared to be novel key genes identified in our research. We also identified these key genes interactions with miRNAs.
Collapse
Affiliation(s)
- Rubi Solanki
- School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute Dasman 15462, Kuwait
| | - Bhavya Alankar
- Department of Computer Science and Engineering, School of Engineering Sciences and Technology, Jamia Hamdard, New Delhi 110062, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ritu Chauhan
- Artificial Intelligence and IoT lab, Centre for Computational Biology and Bioinformatics, Amity University, Noida, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Harleen Kaur
- Department of Computer Science and Engineering, School of Engineering Sciences and Technology, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Onoprienko A, Hofstetter G, Muellauer L, Dorittke T, Polterauer S, Grimm C, Bartl T. Prognostic role of transcription factor ARID1A in patients with endometrial cancer of no specific molecular profile (NSMP) subtype. Int J Gynecol Cancer 2024; 34:840-846. [PMID: 38508586 DOI: 10.1136/ijgc-2023-005111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVE As more than 50% of newly diagnosed endometrial cancers remain classified as 'no specific molecular subtype' (NSMP) due to a lack of established biomarkers to further improve molecular subtyping, this study aims to evaluate the prognostic value of ARID1A in endometrial cancers of NSMP subtype. METHODS Prospectively collected molecular profiling data of all consecutive patients with endometrial cancer who underwent primary surgery at our department between August 2017 and June 2022 and for whom both molecular profiling and clinical follow-up data were available were retrospectively evaluated. Tumor specimens were evaluated by combined mismatch repair protein immunohistochemistry and targeted next-generation hotspot sequencing. ARID1A mutational status, as defined by full-length gene sequencing, was matched with risk of recurrence, progression-free and disease-specific survival within the NSMP cohort. RESULTS A total of 127 patients with endometrial cancer were included. Among 72 patients with tumors of NSMP subtype (56.7%), ARID1A mutations were identified in 24 cases (33.3%). ARID1A mutations were significantly associated with a higher risk of recurrence (37.5% vs 12.5%, OR 4.20, 95% CI 1.28 to 13.80, p=0.018) and impaired progression-free survival (HR 3.96, 95% CI 1.41 to 11.15, p=0.009), but not with disease-specific survival. The results for both risk of recurrence (OR 3.70, 95% CI 1.04 to 13.13, p=0.043) and progression-free survival (HR 3.19, 95% CI 1.10 to 9.25, p=0.033) were confirmed in multivariable analysis compared with advanced tumor stage International Federation of Gynecology and Obstetrics (2009) (FIGO ≥III) and impaired Eastern Clinical Oncology Group performance status (ECOG ≥1). CONCLUSION ARID1A appears to identify patients with endometrial cancer of NSMP subtypes with a higher risk of recurrence and could be used as a future prognostic biomarker. After clinical validation, ARID1A assessment could help to further sub-classify selected endometrial cancers and improve personalized treatment strategies.
Collapse
Affiliation(s)
- Arina Onoprienko
- Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Vienna, Austria
| | - Gerda Hofstetter
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Tim Dorittke
- Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Vienna, Austria
| | - Stephan Polterauer
- Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Vienna, Austria
| | - Christoph Grimm
- Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Vienna, Austria
| | - Thomas Bartl
- Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Vienna, Austria
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Li JJ, Lee CS. The Role of the AT-Rich Interaction Domain 1A Gene ( ARID1A) in Human Carcinogenesis. Genes (Basel) 2023; 15:5. [PMID: 38275587 PMCID: PMC10815128 DOI: 10.3390/genes15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) (SWI/SNF) complex uses energy from ATP hydrolysis to mobilise nucleosomes on chromatin. Components of SWI/SNF are mutated in 20% of all human cancers, of which mutations in AT-rich binding domain protein 1A (ARID1A) are the most common. ARID1A is mutated in nearly half of ovarian clear cell carcinoma and around one-third of endometrial and ovarian carcinomas of the endometrioid type. This review will examine in detail the molecular functions of ARID1A, including its role in cell cycle control, enhancer regulation, and the prevention of telomerase activity. ARID1A has key roles in the maintenance of genomic integrity, including DNA double-stranded break repair, DNA decatenation, integrity of the cohesin complex, and reduction in replication stress, and is also involved in mismatch repair. The role of ARID1A loss in the pathogenesis of some of the most common human cancers is discussed, with a particular emphasis on gynaecological cancers. Finally, several promising synthetic lethal strategies, which exploit the specific vulnerabilities of ARID1A-deficient cancer cells, are briefly mentioned.
Collapse
Affiliation(s)
- Jing Jing Li
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Cheok Soon Lee
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2010, Australia
| |
Collapse
|
4
|
Zhang Z, Li Q, Sun S, Ye J, Li Z, Cui Z, Liu Q, Zhang Y, Xiong S, Zhang S. Prognostic and immune infiltration significance of ARID1A in TCGA molecular subtypes of gastric adenocarcinoma. Cancer Med 2023; 12:16716-16733. [PMID: 37366273 PMCID: PMC10501255 DOI: 10.1002/cam4.6294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/19/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND AT-rich interaction domain 1A (ARID1A) is an essential subunit of the switch/sucrose non-fermentable chromatin remodeling complex and is considered to be a tumor suppressor. The Cancer Genome Atlas (TCGA) molecular classification has deepened our understanding of gastric cancer at the molecular level. This study explored the significance of ARID1A expression in TCGA subtypes of gastric adenocarcinoma. METHODS We collected 1248 postoperative patients with gastric adenocarcinoma, constructed tissue microarrays, performed immunohistochemistry for ARID1A, and obtained correlations between ARID1A and clinicopathological variables. We then carried out the prognostic analysis of ARID1A in TCGA subtypes. Finally, we screened patients by random sampling and propensity score matching method and performed multiplex immunofluorescence to explore the effects of ARID1A on CD4, CD8, and PD-L1 expression in TCGA subtypes. RESULTS Seven variables independently associated with ARID1A were screened out: mismatch repair proteins, PD-L1, T stage, differentiation status, p53, E-cadherin, and EBER. The independent prognostic variables in the genomically stable (GS) subtype were N stage, M stage, T stage, chemotherapy, size, and ARID1A. PD-L1 expression was higher in the ARID1A negative group than in the ARID1A positive group in all TCGA subgroups. CD4 showed higher expression in the ARID1A negative group in most subtypes, while CD8 did not show the difference in most subtypes. When ARID1A was negative, PD-L1 expression was positively correlated with CD4/CD8 expression; while when ARID1A was positive, this correlation disappeared. CONCLUSIONS The negative expression of ARID1A occurred more frequently in the Epstein-Barr virus and microsatellite instability subtypes and was an independent adverse prognostic factor in the GS subtype. In the TCGA subtypes, ARID1A negative expression caused increased CD4 and PD-L1 expression, whereas CD8 expression appeared independent of ARID1A. The expression of CD4/CD8 induced by ARID1A negativity was accompanied by an increase in PD-L1 expression.
Collapse
Affiliation(s)
- Zhenkun Zhang
- Weihai Municipal HospitalShandong UniversityWeihaiChina
- Department of OncologyShouguang People's HospitalWeifangChina
| | - Qiujing Li
- Department of Pathology, Weihai Municipal HospitalShandong UniversityWeihaiChina
| | - Shanshan Sun
- Department of Oncology, Weihai Municipal HospitalShandong UniversityWeihaiChina
| | - Jing Ye
- Binzhou Medical UniversityYantaiChina
| | - Zhe Li
- Weifang Medical CollegeWeifangChina
| | - Zhengguo Cui
- Department of Environmental HealthUniversity of Fukui School of Medical SciencesFukuiJapan
| | - Qian Liu
- Department of Pathology, Weihai Municipal HospitalShandong UniversityWeihaiChina
| | - Yujie Zhang
- Department of Pathology, Weihai Municipal HospitalShandong UniversityWeihaiChina
| | | | - Shukun Zhang
- Department of Pathology, Weihai Municipal HospitalShandong UniversityWeihaiChina
| |
Collapse
|
5
|
Wang M, Hui P. A Timely Update of Immunohistochemistry and Molecular Classification in the Diagnosis and Risk Assessment of Endometrial Carcinomas. Arch Pathol Lab Med 2021; 145:1367-1378. [PMID: 34673912 DOI: 10.5858/arpa.2021-0098-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Endometrial carcinoma is the most common gynecologic malignancy in the United States and has been traditionally classified based on histology. However, the distinction of certain histologic subtypes based on morphology is not uncommonly problematic, and as such, immunohistochemical study is often needed. Advances in comprehensive tumor sequencing have provided novel molecular profiles of endometrial carcinomas. Four distinct molecular subtypes with different prognostic values have been proposed by The Cancer Genome Atlas program: polymerase epsilon ultramutated, microsatellite instability hypermutated, copy number low (microsatellite stable or no specific molecular profile), and copy number high (serouslike, p53 mutant). OBJECTIVE.— To discuss the utilities of commonly used immunohistochemical markers for the classification of endometrial carcinomas and to review the recent advancements of The Cancer Genome Atlas molecular reclassification and their potential impact on treatment strategies. DATA SOURCES.— Literature review and authors' personal practice experience. CONCLUSIONS.— The current practice of classifying endometrial cancers is predominantly based on morphology. The use of ancillary testing, including immunohistochemistry, is helpful in the identification, differential diagnosis, and classification of these cancers. New developments such as molecular subtyping have provided insightful prognostic values for endometrial carcinomas. The proposed The Cancer Genome Atlas classification is poised to gain further prominence in guiding the prognostic evaluation for tailored treatment strategies in the near future.
Collapse
Affiliation(s)
- Minhua Wang
- From the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Pei Hui
- From the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
6
|
Kato MK, Yoshida H, Tanase Y, Uno M, Ishikawa M, Kato T. Loss of ARID1A Expression as a Favorable Prognostic Factor in Early-Stage Grade 3 Endometrioid Endometrial Carcinoma Patients. Pathol Oncol Res 2021; 27:598550. [PMID: 34257552 PMCID: PMC8262237 DOI: 10.3389/pore.2021.598550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022]
Abstract
Introduction: High-risk patients with grade 3 endometrioid endometrial carcinoma (G3EEC) who require adjuvant therapy have not been clearly identified. Therefore, the current study aimed to investigate the prognostic impact of ARID1A, p53, and mismatch repair (MMR) protein expressions, previously reported as prognosticators in some gynecological cancers, in patients with early-stage G3EEC. Methods: A total of 67 patients with pathologically confirmed early-stage G3EEC diagnosed between 1997 and 2020 were identified; none received adjuvant chemotherapy. The recurrence-free survival (RFS) and overall survival (OS) were estimated using the Kaplan-Meier method and compared with a log-rank test. The protein expressions of ARID1A, p53, and MMR were examined via immunohistochemistry, and the associations between these biomarkers and clinical outcomes were evaluated. Results: Recurrence was observed in 9 (13%) of the 67 patients with early stage G3EEC. The respective 5-years RFS and OS rates were 87.7% and 93.7%, and 68.6% and 85.7%, respectively for stages I and II. Multivariate analysis showed significantly longer RFS among patients with ARID1A loss (hazard ratio = 8.7; 95% CI, 1.09–69.6, p = 0.04). No significant differences were observed in RFS and OS of patients according to p53 and MMR expression status. Conclusion: ARID1A expression status was a prognosticator for patients with early stage G3EEC without adjuvant therapy, whereas p53 and MMR expression status showed no impact on survival outcomes. ARID1A may become a useful biomarker for stratification of adjuvant treatment for early stage G3EEC patients.
Collapse
Affiliation(s)
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuhito Tanase
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Masaya Uno
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Wang Y, Hoang L, Ji JX, Huntsman DG. SWI/SNF Complex Mutations in Gynecologic Cancers: Molecular Mechanisms and Models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:467-492. [PMID: 31977292 DOI: 10.1146/annurev-pathmechdis-012418-012917] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SWI/SNF (mating type SWItch/Sucrose NonFermentable) chromatin remodeling complexes interact with histones and transcription factors to modulate chromatin structure and control gene expression. These evolutionarily conserved multisubunit protein complexes are involved in regulating many biological functions, such as differentiation and cell proliferation. Genomic studies have revealed frequent mutations of genes encoding multiple subunits of the SWI/SNF complexes in a wide spectrum of cancer types, including gynecologic cancers. These SWI/SNF mutations occur at different stages of tumor development and are restricted to unique histologic types of gynecologic cancers. Thus, SWI/SNF mutations have to function in the appropriate tissue and cell context to promote gynecologic cancer initiation and progression. In this review, we summarize the current knowledge of SWI/SNF mutations in the development of gynecologic cancers to provide insights into both molecular pathogenesis and possible treatment implications for these diseases.
Collapse
Affiliation(s)
- Yemin Wang
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada; .,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| | - Lien Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada;
| | - Jennifer X Ji
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada;
| | - David G Huntsman
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada; .,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| |
Collapse
|
8
|
Szewczuk W, Szewczuk O, Czajkowski K, Grala B, Semczuk A. Ovarian adult-type granulosa cell tumor concomitant with simple endometrial hyperplasia: a case study with selected immunohistochemistry. J Int Med Res 2019; 48:300060519886984. [PMID: 31870196 PMCID: PMC7607058 DOI: 10.1177/0300060519886984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ovarian adult-type granulosa cell tumors are often associated with endometrial hyperplasia or even uterine cancer. Herein, we present a case report of a 65-year-old female patient who had undergone curettage of the uterine cavity several times due to abnormal and irregular uterine bleeding. Owing to recurrent episodes of vaginal bleeding as well as ineffective pharmacological treatment of simple endometrial hyperplasia without atypia, the patient underwent a laparoscopically-assisted vaginal hysterectomy. Owing to an enlarged right ovary with bluish color, intra-operative pathological examination was immediately performed. Surprisingly, an ovarian adult-type granulosa cell tumor was diagnosed, and the surgery was extended to pelvic lymphadenectomy and omentectomy. Immunohistochemical staining with selected antibodies (Arginase 2, Nidogen 2, BAF250a/ARID1A, GPR30, SF-1/NR5A, and 1LRH-2E1/NR5A2) was also performed. In conclusion, in cases of recurrent vaginal bleeding concomitant with endometrial hyperplasia, the existence of rare ovarian tumors connected with extensive estrogenic stimulation must be taken into account. Immunostaining with selected antibodies (Arginase 2, Nidogen 2, ARID1A, or GPR30) may help elucidate the possible molecular mechanisms associated with the BAF250a/development of various ovarian/endometrial abnormalities.
Collapse
Affiliation(s)
- Wiktor Szewczuk
- Department of Pathology, Military Institute of Medicine, Warsaw, Poland
| | - Oksana Szewczuk
- IInd Department of Obstetrics and Gynecology, Medical University, Warsaw, Poland
| | - Krzysztof Czajkowski
- IInd Department of Obstetrics and Gynecology, Medical University, Warsaw, Poland
| | - Bartłomiej Grala
- Department of Pathology, Military Institute of Medicine, Warsaw, Poland
| | - Andrzej Semczuk
- IInd Department of Gynecology, Lublin Medical University, Lublin, Poland
| |
Collapse
|
9
|
Raffone A, Travaglino A, Saccone G, Cieri M, Mascolo M, Mollo A, Insabato L, Zullo F. Diagnostic and prognostic value of ARID1A in endometrial hyperplasia: a novel marker of occult cancer. APMIS 2019; 127:597-606. [DOI: 10.1111/apm.12977] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/20/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Antonio Raffone
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine University of Naples Federico IINaples Italy
| | - Antonio Travaglino
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine University of Naples Federico II Naples Italy
| | - Gabriele Saccone
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine University of Naples Federico IINaples Italy
| | - Miriam Cieri
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine University of Naples Federico II Naples Italy
| | - Massimo Mascolo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine University of Naples Federico II Naples Italy
| | - Antonio Mollo
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine University of Naples Federico IINaples Italy
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine University of Naples Federico II Naples Italy
| | - Fulvio Zullo
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine University of Naples Federico IINaples Italy
| |
Collapse
|
10
|
Ideno N, Yamaguchi H, Okumura T, Huang J, Brun MJ, Ho ML, Suh J, Gupta S, Maitra A, Ghosh B. A pipeline for rapidly generating genetically engineered mouse models of pancreatic cancer using in vivo CRISPR-Cas9-mediated somatic recombination. J Transl Med 2019; 99:1233-1244. [PMID: 30728464 DOI: 10.1038/s41374-018-0171-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/13/2018] [Accepted: 12/02/2018] [Indexed: 12/20/2022] Open
Abstract
Genetically engineered mouse models (GEMMs) that recapitulate the major genetic drivers in pancreatic ductal adenocarcinoma (PDAC) have provided unprecedented insights into the pathogenesis of this lethal neoplasm. Nonetheless, generating an autochthonous model is an expensive, time consuming and labor intensive process, particularly when tissue specific expression or deletion of compound alleles are involved. In addition, many of the current PDAC GEMMs cause embryonic, pancreas-wide activation or loss of driver alleles, neither of which reflects the cognate human disease scenario. The advent of CRISPR/Cas9 based gene editing can potentially circumvent many of the aforementioned shortcomings of conventional breeding schema, but ensuring the efficiency of gene editing in vivo remains a challenge. Here we have developed a pipeline for generating PDAC GEMMs of complex genotypes with high efficiency using a single "workhorse" mouse strain expressing Cas9 in the adult pancreas under a p48 promoter. Using adeno-associated virus (AAV) mediated delivery of multiplexed guide RNAs (sgRNAs) to the adult murine pancreas of p48-Cre; LSL-Cas9 mice, we confirm our ability to express an oncogenic Kras G12D allele through homology-directed repair (HDR), in conjunction with CRISPR-induced disruption of cooperating alleles (Trp53, Lkb1 and Arid1A). The resulting GEMMs demonstrate a spectrum of precursor lesions (pancreatic intraepithelial neoplasia [PanIN] or Intraductal papillary mucinous neoplasm [IPMN] with eventual progression to PDAC. Next generation sequencing of the resulting murine PDAC confirms HDR of oncogenic KrasG12D allele at the endogenous locus, and insertion deletion ("indel") and frameshift mutations of targeted tumor suppressor alleles. By using a single "workhorse" mouse strain and optimal AAV serotype for in vivo gene editing with combination of driver alleles, we present a facile autochthonous platform for interrogation of the PDAC genome.
Collapse
Affiliation(s)
- Noboru Ideno
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroshi Yamaguchi
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Takashi Okumura
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathon Huang
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Mitchell J Brun
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Michelle L Ho
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Sonal Gupta
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA.
| | - Bidyut Ghosh
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
A Selected Immunohistochemical Panel Aids in Differential Diagnosis and Prognostic Stratification of Subtypes of High-grade Endometrial Carcinoma: A Clinicopathologic and Immunohistochemical Study at a Single Institution. Appl Immunohistochem Mol Morphol 2018; 25:696-702. [PMID: 27093454 DOI: 10.1097/pai.0000000000000374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate whether a selected immunohistochemical panel (estrogen receptor, p53, ARID1A, PPP2R1A, HNF-1β) could contribute to the diagnostic process of high-grade endometrial carcinomas (HG-ECs). We also aimed to analyze the correlation of these immunohistochemical results with several morphologic variables and survival data. After revising the diagnosis of 78 HG-ECs, immunohistochemical analysis was performed for each case. After immunohistochemical analysis, a specific diagnosis of prototypic HG-EC was established in most of the cases that were uncertain due to morphologic ambiguity. In the univariate analysis, older patient age, type II morphology, undifferentiated carcinoma and carcinosarcoma type of histology, altered p53 immunostaining, strong membranous staining of PPP2R1A, presence of lymphovascular invasion in serous carcinoma, and microcystic, elongated, and fragmented-type infiltration pattern in endometrioid carcinoma were significantly related to poor prognosis. In the multivariate analysis, only older patient age and carcinosarcoma or undifferentiated/dedifferentiated carcinoma type histology were found to be significantly poor prognostic factors (P=0.011), whereas advanced FIGO stage and type II histology were found to be correlated with poor prognosis, but did not reach statistical significance. We suggest that immunohistochemistry should be used in the differential diagnosis of HG-ECs, especially those with ambiguous morphology. Markers used in this study made a valuable contribution to the diagnostic process as well as prediction of prognosis.
Collapse
|
12
|
Park CK, Yoon G, Cho YA, Kim HS. Clinicopathological and immunohistochemical characterization of papillary proliferation of the endometrium: A single institutional experience. Oncotarget 2018; 7:39197-39206. [PMID: 27322430 PMCID: PMC5129925 DOI: 10.18632/oncotarget.10049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/04/2016] [Indexed: 12/21/2022] Open
Abstract
Papillary proliferation of the endometrium is an unusual lesion that is composed of papillae with fibrovascular stromal cores covered with benign-appearing glandular epithelium. We studied the clinicopathological and immunohistochemical features of four cases of endometrial papillary proliferations. All patients were postmenopausal. Two lesions were incidental findings in hysterectomy specimens, and two lesions were detected in endometrial curettage specimens. Based on the degree of architectural complexity and extent of proliferation, we classified papillary proliferations histopathologically into "simple" or "complex" growth patterns. Three cases were classified as simple papillary proliferation, and one case was classified as complex papillary proliferation. Simple papillary proliferations were characterized by slender papillae with delicate stromal cores. In contrast, complex papillary proliferations had intracystic papillary projections and cellular clusters with frequent branching and occasional cytological atypia. All cases showed coexistent metaplastic epithelial changes, including mucinous metaplasia, eosinophilic cell change, and ciliated cell metaplasia. One patient with simple papillary proliferations had coexistent well-differentiated endometrioid carcinoma. One patient had subsequent hyperplasia without atypia, and another patient had subsequent atypical hyperplasia/endometrioid intraepithelial neoplasia; both patients underwent total hysterectomy within four months. Our observations are consistent with previous data demonstrating that endometrial papillary proliferations coexist with or develop into atypical hyperplasia/endometrioid intraepithelial neoplasia or endometrioid carcinoma. It is very important for pathologists to discriminate papillary proliferations from neoplastic lesions (including atypical hyperplasia/endometrioid intraepithelial neoplasia and well-differentiated endometrioid carcinoma) and benign mimickers (including papillary syncytial metaplasia).
Collapse
Affiliation(s)
- Cheol Keun Park
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gun Yoon
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan-si, Gyeongsangnam-do, Republic of Korea
| | - Yoon Ah Cho
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Soo Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Alldredge JK, Eskander RN. EZH2 inhibition in ARID1A mutated clear cell and endometrioid ovarian and endometrioid endometrial cancers. GYNECOLOGIC ONCOLOGY RESEARCH AND PRACTICE 2017; 4:17. [PMID: 29093822 PMCID: PMC5663065 DOI: 10.1186/s40661-017-0052-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/12/2017] [Indexed: 12/30/2022]
Abstract
Clear cell carcinoma and endometrioid adenocarcinoma are histologic subtypes of ovarian and uterine cancer that demonstrate unique clinical behavior but share common underlying genomic aberrations and oncogenic pathways. ARID1A mutations are more frequently identified in these tumors, in comparison to other gynecologic histologies, and loss of ARID1A tumor suppressor function is thought to be an essential component of carcinogenic transformation. Several therapeutic targets in ARID1A mutated cancers are in development, including EZH2 inhibitors. EZH2 facilitates epigenetic methylation to modulate gene expression, and both uterine and ovarian cancers show evidence of EZH2 over expression. EZH2 inhibition in ARID1A mutated tumors acts in a synthetically lethal manner to suppress cell growth and promote apoptosis, revealing a unique new therapeutic opportunity. Several phase 1 and 2 clinical trials of EZH2 inhibitors are ongoing currently and there is considerable promise in translational trials for utilization of this new targeted therapy, both to capitalize on ARID1A loss of function and to increase sensitivity to platinum-based adjuvant chemotherapies. This review will synthesize the molecular carcinogenesis of these malignancies and their unique clinical behavior, as a foundation for an emerging frontier of targeted therapeutics - the synergistic inhibition of EZH2 in ARID1A mutated cancers.
Collapse
Affiliation(s)
- Jill K. Alldredge
- University of California, 101 The City Drive South Orange, Irvine, CA 92868 USA
| | - Ramez N. Eskander
- University of California, San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92029-S0987 USA
| |
Collapse
|
14
|
Lee SE, Park HY, Shim SH, Kim WY. Dedifferentiated carcinoma with clear cell carcinoma of the endometrium: A case report. Pathol Int 2017; 67:472-476. [DOI: 10.1111/pin.12557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/31/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Seung Eun Lee
- Department of Pathology; Konkuk University Medical Center; Konkuk University School of Medicine; Seoul Korea
| | - Ha young Park
- Department of Pathology; Busan Paik Hospital; Inje University College of Medicine; Busan Korea
| | - Seung-Hyuk Shim
- Department of Obstetrics and Gynaecology; Konkuk University School of Medicine; Seoul Korea
| | - Wook Youn Kim
- Department of Pathology; Konkuk University Medical Center; Konkuk University School of Medicine; Seoul Korea
| |
Collapse
|
15
|
Liu G, Xu P, Fu Z, Hua X, Liu X, Li W, Zhang M, Wu J, Wen J, Xu J, Jia X. Prognostic and Clinicopathological Significance of ARID1A in Endometrium-Related Gynecological Cancers: A Meta-Analysis. J Cell Biochem 2017; 118:4517-4525. [PMID: 28466574 DOI: 10.1002/jcb.26109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
Abstract
The tumor suppressor gene, AT Rich Interactive Domain 1A (ARID1A) mutation has been reported in a variety of cancers, especially the endometrium-related gynecological cancers, including the ovarian clear cell carcinoma, ovarian endometrioid carcinoma, and uterine endometrioid carcinoma. However, the prognostic value of ARID1A in endometrium-related gynecological cancers is still inconclusive. Therefore, we performed this meta-analysis to evaluate the clinical significance of ARID1A in endometrium-related gynecological cancers. By systematically searching all the relevant studies from Pubmed, Cochrane Library, and Web of Science up to September 2016, 11 studies with 1,432 patients were included. All the study characteristics and the prognostic data were extracted. Hazard ratios (HRs) and 95% confidence intervals (CIs) were pooled using the fixed-effect or random-effect model. Our results indicated that negative ARID1A expression predicted shorter Progression free survival (PFS, HR, 1.84; 95%CI, 1.32-2.57, P = 0.000) of patients with endometrium related gynecological cancers, especially the patiently with OCCC and the patients in Japan. Besides, a marginal trend towards the same direction was found in the Overall analysis (OS, HR, 1.34; 95%CI, 0.93-1.93, P = 0.112). Furthermore, the significant correlation was achieved between the negative ARID1A expression and the FIGO stage of endometrium-related gynecological cancers, but not the other characteristics. J. Cell. Biochem. 118: 4517-4525, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guangquan Liu
- Department of Obstetrics Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical, University, Nanjing, 210004, China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Medical Institute, Nanjing Maternity and Child, Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Ziyi Fu
- Nanjing Maternity and Child Health Medical Institute, Nanjing Maternity and Child, Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Xiangdong Hua
- Department of Obstetrics Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical, University, Nanjing, 210004, China
| | - Xiaoguang Liu
- Department of Obstetrics Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical, University, Nanjing, 210004, China
| | - Wenqu Li
- Department of Obstetrics Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical, University, Nanjing, 210004, China
| | - Mi Zhang
- Department of Obstetrics Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical, University, Nanjing, 210004, China
| | - Jiacong Wu
- Nantong Maternity and Child Health Care Hospital, Nantong, 226081, China
| | - Juan Wen
- Nanjing Maternity and Child Health Medical Institute, Nanjing Maternity and Child, Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Juan Xu
- Department of Obstetrics Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical, University, Nanjing, 210004, China
| | - Xuemei Jia
- Department of Obstetrics Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical, University, Nanjing, 210004, China
| |
Collapse
|
16
|
Luchini C, Veronese N, Solmi M, Cho H, Kim JH, Chou A, Gill AJ, Faraj SF, Chaux A, Netto GJ, Nakayama K, Kyo S, Lee SY, Kim DW, Yousef GM, Scorilas A, Nelson GS, Köbel M, Kalloger SE, Schaeffer DF, Yan HB, Liu F, Yokoyama Y, Zhang X, Pang D, Lichner Z, Sergi G, Manzato E, Capelli P, Wood LD, Scarpa A, Correll CU. Prognostic role and implications of mutation status of tumor suppressor gene ARID1A in cancer: a systematic review and meta-analysis. Oncotarget 2016; 6:39088-97. [PMID: 26384299 PMCID: PMC4770758 DOI: 10.18632/oncotarget.5142] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/27/2015] [Indexed: 12/17/2022] Open
Abstract
Loss of the tumor suppressor gene AT-rich interactive domain-containing protein 1A (ARID1A) has been demonstrated in several cancers, but its prognostic role is unknown. We aimed to investigate the risk associated with loss of ARID1A (ARID1A−) for all-cause mortality, cancer-specific mortality and recurrence of disease in subjects with cancer. PubMed and SCOPUS search from database inception until 01/31/2015 without language restriction was conducted, contacting authors for unpublished data. Eligible were prospective studies reporting data on prognostic parameters in subjects with cancer, comparing participants with presence of ARID1A (ARID1A+) vs. ARID1A−, assessed either via immunohistochemistry (loss of expression) or with genetic testing (presence of mutation). Data were summarized using risk ratios (RR) for number of deaths/recurrences and hazard ratios (HR) for time-dependent risk related to ARID1A− adjusted for potential confounders. Of 136 hits, 25 studies with 5,651 participants (28 cohorts; ARID1A−: n = 1,701; ARID1A+: n = 3,950), with a mean follow-up period of 4.7 ± 1.8 years, were meta-analyzed. Compared to ARID1A+, ARID1A− significantly increased cancer-specific mortality (studies = 3; RR = 1.55, 95% confidence interval (CI) = 1.19–2.00, I2 = 31%). Using HRs adjusted for potential confounders, ARID1A− was associated with a greater risk of cancer-specific mortality (studies = 2; HR = 2.55, 95%CI = 1.19–5.45, I2 = 19%) and cancer recurrence (studies = 10; HR = 1.93, 95%CI = 1.22–3.05, I2 = 76%). On the basis of these results, we have demonstrated that loss of ARID1A shortened time to cancer-specific mortality, and to recurrence of cancer when adjusting for potential confounders. For its role, this gene should be considered as an important potential target for personalized medicine in cancer treatment.
Collapse
Affiliation(s)
- Claudio Luchini
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy.,Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Nicola Veronese
- Department of Medicine, Geriatrics Division, University of Padova, Padova, Italy
| | - Marco Solmi
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Angela Chou
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, St. Leonards, Australia.,Sydney Vital Translational Research Centre St. Leonards, Australia.,University of Sydney, Sydney, NSW, Australia.,Department of Anatomical Pathology, SYDPATH St. Vincent's Hospital, Sydney, NSW, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, St. Leonards, Australia.,Sydney Vital Translational Research Centre St. Leonards, Australia.,University of Sydney, Sydney, NSW, Australia
| | - Sheila F Faraj
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Alcides Chaux
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA.,Centro para el Desarrollo de la Investigación Científica (CEDIC), Asunción, Paraguay
| | - George J Netto
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Shimane, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Shimane, Japan
| | - Soo Young Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| | - Duck-Woo Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - George M Yousef
- Department of Laboratory Medicine and Keenan Research Centre, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Athens, Greece
| | - Gregg S Nelson
- Department of Gynecologic Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Steve E Kalloger
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hai-Bo Yan
- Department of Systems Biology for Medicine of School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feng Liu
- Department of Systems Biology for Medicine of School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yoshihito Yokoyama
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zsuzsanna Lichner
- Department of Laboratory Medicine and Keenan Research Centre, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Giuseppe Sergi
- Department of Medicine, Geriatrics Division, University of Padova, Padova, Italy
| | - Enzo Manzato
- Department of Medicine, Geriatrics Division, University of Padova, Padova, Italy
| | - Paola Capelli
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Laura D Wood
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, USA
| | - Aldo Scarpa
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Psychiatry Research, North Shore - Long Island Jewish Health System, Glen Oaks, New York, USA.,Hofstra North Shore LIJ School of Medicine, Hempstead, New York, USA.,The Feinstein Institute for Medical Research, Manhasset, New York, USA.,Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
17
|
Abstract
Endometrial cancer is the most common gynaecological tumour in developed countries, and its incidence is increasing. The most frequently occurring histological subtype is endometrioid adenocarcinoma. Patients are often diagnosed when the disease is still confined to the uterus. Standard treatment consists of primary hysterectomy and bilateral salpingo-oophorectomy, often using minimally invasive approaches (laparoscopic or robotic). Lymph node surgical strategy is contingent on histological factors (subtype, tumour grade, involvement of lymphovascular space), disease stage (including myometrial invasion), patients' characteristics (age and comorbidities), and national and international guidelines. Adjuvant treatment is tailored according to histology and stage. Various classifications are used to assess the risks of recurrence and to determine optimum postoperative management. 5 year overall survival ranges from 74% to 91% in patients without metastatic disease. Trials are ongoing in patients at high risk of recurrence (including chemotherapy, chemoradiation therapy, and molecular targeted therapies) to assess the modalities that best balance optimisation of survival with the lowest adverse effects on quality of life.
Collapse
Affiliation(s)
- Philippe Morice
- Department of Gynecologic Surgery, Gustave Roussy, Villejuif, France; Unit INSERM U 1030, Gustave Roussy, Villejuif, France; Université Paris-Sud (Paris XI), Le Kremlin Bicêtre, France.
| | - Alexandra Leary
- Department of Medical Oncology, Gustave Roussy, Villejuif, France; Translational Research Lab U981, Gustave Roussy, Villejuif, France
| | - Carien Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Emile Darai
- Department of Obstetrics and Gynaecology, Hôpital Tenon, Paris, France; INSERM UMRS 938, Paris, France; Université Pierre et Marie Curie (Paris VI), Paris, France
| |
Collapse
|
18
|
Makker A, Goel MM. Tumor progression, metastasis, and modulators of epithelial-mesenchymal transition in endometrioid endometrial carcinoma: an update. Endocr Relat Cancer 2016; 23:R85-R111. [PMID: 26538531 DOI: 10.1530/erc-15-0218] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
Endometrioid endometrial carcinoma (EEC), also known as type 1 endometrial cancer (EC), accounts for over 70-80% of all cases that are usually associated with estrogen stimulation and often develops in a background of atypical endometrial hyperplasia. The increased incidence of EC is mainly confined to this type of cancer. Most EEC patients present at an early stage and generally have a favorable prognosis; however, up to 30% of EEC present as high risk tumors, which have invaded deep into the myometrium at diagnosis and progressively lead to local or extra pelvic metastasis. The poor survival of advanced EC is related to the lack of effective therapies, which can be attributed to poor understanding of the molecular mechanisms underlying the progression of disease toward invasion and metastasis. Multiple lines of evidence illustrate that epithelial-mesenchymal transition (EMT)-like events are central to tumor progression and malignant transformation, endowing the incipient cancer cell with invasive and metastatic properties. The aim of this review is to summarize the current knowledge on molecular events associated with EMT in progression, invasion, and metastasis of EEC. Further, the role of epigenetic modifications and microRNA regulation, tumor microenvironment, and microcystic elongated and fragmented glands like invasion pattern have been discussed. We believe this article may perhaps stimulate further research in this field that may aid in identifying high risk patients within this clinically challenging patient group and also lead to the recognition of novel targets for the prevention of metastasis - the most fatal consequence of endometrial carcinogenesis.
Collapse
Affiliation(s)
- Annu Makker
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Madhu Mati Goel
- Post Graduate Department of PathologyKing George's Medical University, Lucknow 226003, Uttar Pradesh, India
| |
Collapse
|
19
|
Zhao J, Chen J, Lin H, Jin R, Liu J, Liu X, Meng N, Cai X. The Clinicopathologic Significance of BAF250a (ARID1A) Expression in Hepatocellular Carcinoma. Pathol Oncol Res 2015; 22:453-9. [PMID: 26589513 DOI: 10.1007/s12253-015-0022-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal human cancers. Recently, exome sequencing has revealed that mutation of ARID1A is frequent in HCC. Herein, we determined the clinicopathologic significance of ARID1A expression in HCC. We detected the level of mRNA and protein expression of ARID1A in 12 paired HCC tumors and adjacent non-cancerous tissues by quantitative real-time PCR and immunohistochemistry (IHC). In addition, we determined the expression of BAF250a on 121 HCC tumors by IHC and assessed the association between BAF250a expression and clinicopathologic and prognostic features. The levels of ARID1A mRNA were significantly elevated in 10 of 12 HCC tumors compared with adjacent non-cancerous tissues. The level of BAF250a protein expression was higher in 10 of 12 HCC tumors compared with adjacent liver tissues. IHC indicated that 12.17 % of HCC tumors (14/115) were BAF250a-negative. Loss of BAF250a was significantly associated with larger tumor size, but not associated with other clinicopathologic features. There was no significant difference in disease-free or overall survival between BAF250a-positive and BAF250a-negative patients. Most HCCs had an increased level of ARID1A mRNA and BAF250a expression. Loss of BAF250a was significantly more frequent in larger HCC tumors, but had no prognostic significance.
Collapse
Affiliation(s)
- Jie Zhao
- Hepatobiliary and Pancreas Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, East Qinchun Road, Hangzhou, 310016, China
| | - Jiang Chen
- Hepatobiliary and Pancreas Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, East Qinchun Road, Hangzhou, 310016, China
| | - Hui Lin
- Hepatobiliary and Pancreas Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, East Qinchun Road, Hangzhou, 310016, China
| | - Renan Jin
- Hepatobiliary and Pancreas Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, East Qinchun Road, Hangzhou, 310016, China
| | - Jinghua Liu
- Hepatobiliary and Pancreas Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, East Qinchun Road, Hangzhou, 310016, China
| | - Xiaolong Liu
- Hepatobiliary and Pancreas Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, East Qinchun Road, Hangzhou, 310016, China
| | - Ning Meng
- Hepatobiliary and Pancreas Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, East Qinchun Road, Hangzhou, 310016, China
| | - Xiujun Cai
- Hepatobiliary and Pancreas Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, East Qinchun Road, Hangzhou, 310016, China.
| |
Collapse
|
20
|
Takeda T, Banno K, Okawa R, Yanokura M, Iijima M, Irie-Kunitomi H, Nakamura K, Iida M, Adachi M, Umene K, Nogami Y, Masuda K, Kobayashi Y, Tominaga E, Aoki D. ARID1A gene mutation in ovarian and endometrial cancers (Review). Oncol Rep 2015; 35:607-13. [PMID: 26572704 PMCID: PMC4689482 DOI: 10.3892/or.2015.4421] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022] Open
Abstract
The AT-rich interacting domain-containing protein 1A gene (ARID1A) encodes ARID1A, a member of the SWI/SNF chromatin remodeling complex. Mutation of ARID1A induces changes in expression of multiple genes (CDKN1A, SMAD3, MLH1 and PIK3IP1) via chromatin remodeling dysfunction, contributes to carcinogenesis, and has been shown to cause transformation of cells in association with the PI3K/AKT pathway. Information on ARID1A has emerged from comprehensive genome-wide analyses with next-generation sequencers. ARID1A mutations have been found in various types of cancer and occur at high frequency in endometriosis-associated ovarian cancer, including clear cell adenocarcinoma and endometrioid adenocarcinoma, and also occur at endometrial cancer especially in endometrioid adenocarcinoma. It has also been suggested that ARID1A mutation occurs at the early stage of canceration from endometriosis to endometriosis-associated carcinoma in ovarian cancer and also from atypical endo-metrial hyperplasia to endometrioid adenocarcinoma in endometrial cancer. Therefore, development of a screening method that can detect mutations of ARID1A and activation of the PI3K/AKT pathway might enable early diagnosis of endometriosis-associated ovarian cancers and endometrial cancers. Important results may also emerge from a current clinical trial examining a multidrug regimen of temsirolimus, a small molecule inhibitor of the PI3K/AKT pathway, for treatment of advanced ovarian clear cell adenocarcinoma with ARID1A mutation and PI3K/AKT pathway activation. Also administration of sorafenib, a multikinase inhibitor, can inhibit cancer proliferation with PIK3CA mutation and resistance to mTOR inhibitors and GSK126, a molecular-targeted drug can inhibit proliferation of ARID1A-mutated ovarian clear cell adenocarcinoma cells by targeting and inhibiting EZH2. Further studies are needed to determine the mechanism of chromatin remodeling dysregulation initiated by ARID1A mutation, to develop methods for early diagnosis, to investigate new cancer therapy targeting ARID1A, and to examine the involvement of ARID1A mutations in development, survival and progression of cancer cells.
Collapse
Affiliation(s)
- Takashi Takeda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Ryuichiro Okawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Megumi Yanokura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Moito Iijima
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Haruko Irie-Kunitomi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Kanako Nakamura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Miho Iida
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Masataka Adachi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Kiyoko Umene
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Yuya Nogami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Kenta Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160‑8582, Japan
| |
Collapse
|
21
|
Sun Q, Zhu T, Wang CY, Ma D. Binding of human SWI1 ARID domain to DNA without sequence specificity: A molecular dynamics study. ACTA ACUST UNITED AC 2015. [PMID: 26223912 DOI: 10.1007/s11596-015-1455-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SWI1 is a member of a new class of tumor DNA-binding proteins named as the AT-rich interaction domain family (ARID), and considered to bind with AT base pairs specifically. Genomic and functional data support ARID1A as a tumor suppressor because ARID1A/BAF250a (SWI1) subunit of the SWI/SNF chromatin-remodeling complex has emerged as recurrently mutated in a broad array of tumor types. But the crystal structure of SWI1 has not been solved as yet. Using docking and molecular dynamics, we predicted the DNA interaction pattern of human SWI1 ARID and made comparisons with the other two representative ARID family members, human Mrf-2 ARID and Drosophila Dri ARID. Dynamic results revealed that the N-terminal and loop L1 of SWI1 ARID bound with the DNA major groove, while the loop L2 and helix H6 bound with the minor groove. Moreover, it was found that SWI1 ARID bound with DNA apparently in a sequence-nonspecific manner. It was concluded that SWI1 ARID can form stable complex with sequence-nonspecific DNA segment comparing to Mrf-2 ARID/DNA and Dri ARID/DNA sequence-specific complexes.
Collapse
Affiliation(s)
- Qian Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chang-Yu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
22
|
Marquez SB, Thompson KW, Lu L, Reisman D. Beyond Mutations: Additional Mechanisms and Implications of SWI/SNF Complex Inactivation. Front Oncol 2015; 4:372. [PMID: 25774356 PMCID: PMC4343012 DOI: 10.3389/fonc.2014.00372] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/11/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED SWI/SNF is a major regulator of gene expression. Its role is to facilitate the shifting and exposure of DNA segments within the promoter and other key domains to transcription factors and other essential cellular proteins. This complex interacts with a wide range of proteins and does not function within a single, specific pathway; thus, it is involved in a multitude of cellular processes, including DNA repair, differentiation, development, cell adhesion, and growth control. Given SWI/SNF's prominent role in these processes, many of which are important for blocking cancer development, it is not surprising that the SWI/SNF complex is targeted during cancer initiation and progression both by mutations and by non-mutational mechanisms. Currently, the understanding of the types of alterations, their frequency, and their impact on the SWI/SNF subunits is an area of intense research that has been bolstered by a recent cadre of NextGen sequencing studies. These studies have revealed mutations in SWI/SNF subunits, indicating that this complex is thus important for cancer development. The purpose of this review is to put into perspective the role of mutations versus other mechanisms in the silencing of SWI/SNF subunits, in particular, BRG1 and BRM. In addition, this review explores the recent development of synthetic lethality and how it applies to this complex, as well as how BRM polymorphisms are becoming recognized as potential clinical biomarkers for cancer risk. SIGNIFICANCE Recent reviews have detailed the occurrence of mutations in nearly all SWI/SNF subunits, which indicates that this complex is an important target for cancer. However, when the frequency of mutations in a given tumor type is compared to the frequency of subunit loss, it becomes clear that other non-mutational mechanisms must play a role in the inactivation of SWI/SNF subunits. Such data indicate that epigenetic mechanisms that are known to regulate BRM may also be involved in the loss of expression of other SWI/SNF subunits. This is important since epigenetically silenced genes are inducible, and thus, the reversal of the silencing of these non-mutationally suppressed subunits may be a viable mode of targeted therapy.
Collapse
Affiliation(s)
- Stefanie B Marquez
- Department of Medicine, Division of Hematology/Oncology, University of Florida , Gainesville, FL , USA
| | - Kenneth W Thompson
- Department of Medicine, Division of Hematology/Oncology, University of Florida , Gainesville, FL , USA
| | - Li Lu
- Department of Pathology, University of Florida , Gainesville, FL , USA
| | - David Reisman
- Department of Medicine, Division of Hematology/Oncology, University of Florida , Gainesville, FL , USA
| |
Collapse
|
23
|
Lee SY, Kim DW, Lee HS, Ihn MH, Oh HK, Park DJ, Kim HH, Kang SB. Loss of AT-rich interactive domain 1A expression in gastrointestinal malignancies. Oncology 2014; 88:234-40. [PMID: 25503393 DOI: 10.1159/000369140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/10/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE AT-rich interactive domain 1A (ARID1A) has recently been identified as a novel tumor suppressor in various tumor types. This study was designed to explore the clinical relevance and prognostic impact of ARID1A expression loss in colorectal cancer (CRC) and gastric cancer (GC). METHODS Immunohistochemistry for ARID1A was performed using tissue microarray blocks containing 196 CRCs and 275 GCs, along with paired normal mucosa. Data on clinicopathologic variables and oncologic outcomes of patients were collected and analyzed. RESULTS We identified 6.1% (12/196) CRC and 8.0% (22/275) GC cases showing loss of ARID1A expression. Expression of ARID1A in paired mucosal epithelial cells was normal in all patients. Loss of ARID1A expression was significantly correlated with negative lymphatic invasion (p = 0.003) in CRC, with large tumor size (p = 0.037) in GC, and with expanding tumor border in both tumor types (CRC, p = 0.010; GC, p = 0.031). However, no association was evident between ARID1A expression and 5-year overall survival in both tumor types. CONCLUSIONS Loss of ARID1A expression is uncommon and not associated with oncologic outcome but may be related to less invasive clinicopathologic features in CRC and GC. Further studies with a larger number of subjects are needed to establish the possible prognostic impact of ARID1A expression loss.
Collapse
Affiliation(s)
- Soo Young Lee
- Department of Surgery, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Yamaguchi K, Matsumura N, Mandai M, Baba T, Konishi I, Murphy SK. Epigenetic and genetic dispositions of ovarian carcinomas. Oncoscience 2014; 1:574-9. [PMID: 25594067 PMCID: PMC4278339 DOI: 10.18632/oncoscience.82] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 12/17/2022] Open
Abstract
Ovarian clear cell carcinoma has unique clinical characteristics with slow growth and a stress-resistant phenotype that is epigenetically induced during cancer progression in an inflammatory microenvironment. We refer to this as an epigenetic disposition, which is frequently associated with unique biomolecular features including prominent alterations in methylation, microsatellite instability and ARID1A mutations. This characteristic methylation profile also affects glucose metabolism, commonly known as the Warburg effect. In contrast, high-grade ovarian serous adenocarcinoma has a genetic disposition that is accompanied by rapid growth, TP53 mutations and chromosomal instability. The concept of epigenetic and genetic dispositions is applicable to various malignancies, including gastric and colorectal cancers. These disposition classifications are based on fundamental characteristics of malignancies and may provide a new vantage point for development of individualized therapies.
Collapse
Affiliation(s)
- Ken Yamaguchi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Noriomi Matsumura
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Masaki Mandai
- Department of Obstetrics and Gynecology, Kinki University, Faculty of Medicine, Osakasayama, Osaka, 589-8511 Japan
| | - Tsukasa Baba
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Ikuo Konishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham NC, 27708 USA
| |
Collapse
|
25
|
Xie C, Fu L, Han Y, Li Q, Wang E. Decreased ARID1A expression facilitates cell proliferation and inhibits 5-fluorouracil-induced apoptosis in colorectal carcinoma. Tumour Biol 2014; 35:7921-7. [PMID: 24833095 DOI: 10.1007/s13277-014-2074-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/06/2014] [Indexed: 12/12/2022] Open
Abstract
AT-rich interactive domain 1A (ARID1A) is a key member of the SWI/SNF chromatin-modeling complex, and the gene has emerged as a tumor suppressor in various human cancers. In the present study, we investigated the expression pattern of ARID1A in human colorectal carcinoma. We found that ARID1A expression was decreased in colorectal carcinoma compared with normal tissue. Loss of ARID1A significantly correlated with poor differentiation (p = 0.0009). We also explored the involvement of ARID1A in the biological behavior of colorectal cancer cell lines. ARID1A overexpression by plasmid transfection in SW620 cell line inhibited proliferation and facilitated 5-fluorouracil-induced apoptosis. ARID1A depletion by siRNA in SW480 cell line promoted proliferation ability and inhibited 5-fluorouracil-induced apoptosis. Furthermore, we found that ARID1A regulated the activity of Akt signaling pathway. In conclusion, our data suggested that ARID1A serves as an important tumor suppressor in colorectal carcinoma and regulates proliferation and chemoresistance of colorectal cancer cells.
Collapse
Affiliation(s)
- Chengyao Xie
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Bei'er Road 92, Heping District, Shenyang, Liaoning Province, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Chou A, Toon CW, Clarkson A, Sioson L, Houang M, Watson N, DeSilva K, Gill AJ. Loss of ARID1A expression in colorectal carcinoma is strongly associated with mismatch repair deficiency. Hum Pathol 2014; 45:1697-703. [PMID: 24925223 DOI: 10.1016/j.humpath.2014.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/03/2014] [Accepted: 04/09/2014] [Indexed: 12/12/2022]
Abstract
ARID1A is a tumor suppressor gene involved in chromatin remodelling. ARID1A mutations and loss of protein expression occur commonly in endometrioid and gynecological clear cell carcinoma where they are associated with mismatch repair (MMR) deficiency. We assessed ARID1A expression in a large cohort of colorectal carcinomas (CRCs). Immunohistochemistry for ARID1A was performed on whole sections from 100 CRCs and on 1876 CRCs in tissue microarray format. There was complete concordance between the staining on whole slides and tissue microarray sections. Loss of staining was found in 110 (5.9%) of 1876 CRCs and was strongly associated with older age, right sided location, large size, BRAF V600E mutation, MMR deficiency, high histological grade and medullary morphology, (all P < .01). There was a trend towards loss of expression being more common in females (P = .06). When subclassified by combined BRAF V600E mutation and MMR status, loss of ARID1A expression was found most commonly in CRCs with the BRAF V600E mutated, MMR- deficient phenotype (58 of 232 cases, 25%, P < .01). In univariate and multivariate analysis, loss of ARID1A expression was not associated with overall survival-hazard ratio 1.05 (0.68-1.64) and 0.60 (0.24-1.44), respectively. All carcinomas arising in patients with known Lynch syndrome (n = 12) were ARID1A positive. We conclude that loss of ARID1A expression occurs in a small but significant proportion of CRCs where it is strongly correlated with mismatch repair deficiency and other clinical and pathological features associated with somatic hypermethylation.
Collapse
Affiliation(s)
- Angela Chou
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia; Department of Anatomical Pathology, Sydpath, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia.
| | - Christopher W Toon
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia; Histopath Pathology, North Ryde, NSW 2113, Australia; Sydney Medical School, University of Sydney 2050, NSW, Australia
| | - Adele Clarkson
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia; Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Loretta Sioson
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia; Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Michelle Houang
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia; Sydney Medical School, University of Sydney 2050, NSW, Australia; Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Nicole Watson
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia; Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Keshani DeSilva
- Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, St Leonards, NSW 2065, Australia; Sydney Medical School, University of Sydney 2050, NSW, Australia; Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| |
Collapse
|