1
|
Daniels AB, Sishtla KL, Bogan CM, Pierce JM, Chen SC, Xu L, Berry JL, Corson TW. Aqueous VEGF-A Levels as a Liquid Biopsy Biomarker of Retinoblastoma Vitreous Seed Response to Therapy. Invest Ophthalmol Vis Sci 2024; 65:18. [PMID: 38861274 PMCID: PMC11174092 DOI: 10.1167/iovs.65.6.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/31/2024] [Indexed: 06/12/2024] Open
Abstract
Purpose Regression of retinoblastoma vitreous seeds (VS) during intravitreal chemotherapy can be delayed, resulting in supernumerary injections. Similarly, VS relapse may not be clinically evident at first. A predictive biomarker of tumor regression and relapse could help guide real-time clinical decision making. Retinoblastoma is an oxygen-sensitive tumor; paradoxically, VS survive in the hypoxic vitreous. We hypothesized that VS elaborate pro-angiogenic cytokines. The purpose was to determine if pro-angiogenic cytokine signatures from aqueous humor could serve as a biomarker of VS response to treatment. Methods Multiplex ELISA was performed on aqueous from rabbit eyes with human retinoblastoma VS xenografts to identify expressed proangiogenic cytokines and changes in aqueous cytokine levels during intravitreal treatment were determined. Confirmatory RNAscope in situ hybridization for VEGF-A was performed on human retinoblastoma tumor sections and VS xenografts from rabbits. For human eyes undergoing intravitreal chemotherapy, serial aqueous VEGF-A levels measured via VEGF-A-specific ELISA were compared to clinical response. Results VEGF-A was highly expressed in human retinoblastoma VS in the xenograft model, and was the only proangiogenic cytokine that correlated with VS disease burden. In rabbits, aqueous VEGF-A levels decreased in response to therapy, consistent with quantitative VS reduction. In patients, aqueous VEGF-A levels associated with clinical changes in disease burden (regression, stability, or relapse), with changes in VEGF-A levels correlating with clinical response. Conclusions Aqueous VEGF-A levels correlate with extent of retinoblastoma VS, suggesting that aqueous VEGF-A may serve as a predictive molecular biomarker of treatment response.
Collapse
Affiliation(s)
- Anthony B. Daniels
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, and Department of Radiation Oncology, Vanderbilt Eye Institute and Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kamakshi L. Sishtla
- Department of Pharmacology and Toxicology, Department of Ophthalmology, Department of Biochemistry and Molecular Biology, and Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Carley M. Bogan
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, and Department of Radiation Oncology, Vanderbilt Eye Institute and Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Janene M. Pierce
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, and Department of Radiation Oncology, Vanderbilt Eye Institute and Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Sheau-Chiann Chen
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Liya Xu
- Children's Hospital - Los Angeles, University of Southern California, Los Angeles, California, United States
| | - Jesse L. Berry
- Children's Hospital - Los Angeles, University of Southern California, Los Angeles, California, United States
| | - Timothy W. Corson
- Department of Pharmacology and Toxicology, Department of Ophthalmology, Department of Biochemistry and Molecular Biology, and Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
2
|
Kaczmarek JV, Bogan CM, Pierce JM, Tao YK, Chen SC, Liu Q, Liu X, Boyd KL, Calcutt MW, Bridges TM, Lindsley CW, Friedman DL, Richmond A, Daniels AB. Intravitreal HDAC Inhibitor Belinostat Effectively Eradicates Vitreous Seeds Without Retinal Toxicity In Vivo in a Rabbit Retinoblastoma Model. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 34757417 PMCID: PMC8590161 DOI: 10.1167/iovs.62.14.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Purpose Current melphalan-based regimens for intravitreal chemotherapy for retinoblastoma vitreous seeds are effective but toxic to the retina. Thus, alternative agents are needed. Based on the known biology of histone deacetylases (HDACs) in the retinoblastoma pathway, we systematically studied whether the HDAC inhibitor belinostat is a viable, molecularly targeted alternative agent for intravitreal delivery that might provide comparable efficacy, without toxicity. Methods In vivo pharmacokinetic experiments in rabbits and in vitro cytotoxicity experiments were performed to determine the 90% inhibitory concentration (IC90). Functional toxicity by electroretinography and structural toxicity by optical coherence tomography (OCT), OCT angiography, and histopathology were evaluated in rabbits following three injections of belinostat 350 µg (2× IC90) or 700 µg (4× IC90), compared with melphalan 12.5 µg (rabbit equivalent of the human dose). The relative efficacy of intravitreal belinostat versus melphalan to treat WERI-Rb1 human cell xenografts in rabbit eyes was directly quantified. RNA sequencing was used to assess belinostat-induced changes in RB cell gene expression. Results The maximum nontoxic dose of belinostat was 350 µg, which caused no reductions in electroretinography parameters, retinal microvascular loss on OCT angiography, or retinal degeneration. Melphalan caused severe retinal structural and functional toxicity. Belinostat 350 µg (equivalent to 700 µg in the larger human eye) was equally effective at eradicating vitreous seeds in the rabbit xenograft model compared with melphalan (95.5% reduction for belinostat, P < 0.001; 89.4% reduction for melphalan, P < 0.001; belinostat vs. melphalan, P = 0.10). Even 700 µg belinostat (equivalent to 1400 µg in humans) caused only minimal toxicity. Widespread changes in gene expression resulted. Conclusions Molecularly targeted inhibition of HDACs with intravitreal belinostat was equally effective as standard-of-care melphalan but without retinal toxicity. Belinostat may therefore be an attractive agent to pursue clinically for intravitreal treatment of retinoblastoma.
Collapse
Affiliation(s)
- Jessica V Kaczmarek
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Carley M Bogan
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Janene M Pierce
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Yuankai K Tao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States
| | - Sheau-Chiann Chen
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Xiao Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kelli L Boyd
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - M Wade Calcutt
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Thomas M Bridges
- Warren Center for Neuroscience Drug Discovery at Vanderbilt, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery at Vanderbilt, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States
| | - Debra L Friedman
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ann Richmond
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, United States.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States.,Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Anthony B Daniels
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States.,Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States.,Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
3
|
Jin L, Ma X, Lei X, Tong J, Wang R. Cyclophosphamide inhibits Pax5 methylation to regulate the growth of retinoblastoma via the Notch1 pathway. Hum Exp Toxicol 2021; 40:S497-S508. [PMID: 34658283 DOI: 10.1177/09603271211051601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Retinoblastoma (Rb) is the most common intraocular malignant tumor in infants. Here, we investigated the function and mechanism of cyclophosphamide (CTX) in the development of Rb. Real-time quantitative polymerase chain reaction (RT-qPCR) results showed that paired box protein 5 (Pax5) expression was down-regulated in Rb tissues and cell lines. Methylation-specific PCR (MSP) results showed that the methylation level of Pax5 was up-regulated in Rb. After treatment with CTX, the Pax5 expression in Rb cell lines was increased significantly. The methylation of Pax5 and the expression of DNA methyltransferases (DNMTs) were down-regulated in the CTX group. Cyclophosphamide inhibited cell proliferation, migration, and invasion, promoted cell apoptosis via the Notch1 pathway. DNA methyltransferase inhibitor SGI-1027 had synergistic effects with CTX. Paired box protein 5 siRNA was transfected into Y79 cells treated with CTX. The expression of DNMTs, Pax5, the Notch1 pathway and apoptosis marker protein was detected by Western blotting, and changes in cell behavior were detected, respectively. Results showed that knockdown of Pax5 reversed the effects of CTX. Moreover, the Notch1 activator Valproic acid (VPA) abolished the inhibitory effects of CTX on Rb development. Moreover, CTX inhibited tumor growth in nude mice. These findings demonstrated that CTX up-regulated Pax5 expression by down-regulating DNMTs expression, and then inhibited the Notch1 signaling pathway activation and Rb growth.
Collapse
Affiliation(s)
- Lan Jin
- Department of Ophthalmology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Xiaojie Ma
- Department of Ophthalmology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Xiaoqin Lei
- Department of Ophthalmology, Xi'an No. 4 Hospital, Xi'an, China
| | - Jing'an Tong
- Department of Ophthalmology, 107652The First Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Runsheng Wang
- Department of Ophthalmology, Xi'an No. 4 Hospital, Xi'an, China
| |
Collapse
|
4
|
Daniels AB, Froehler MT, Kaczmarek JV, Bogan CM, Santapuram PR, Pierce JM, Chen SC, Schremp EA, Boyd KL, Tao YK, Calcutt MW, Koyama T, Richmond A, Friedman DL. Efficacy, Toxicity, and Pharmacokinetics of Intra-Arterial Chemotherapy Versus Intravenous Chemotherapy for Retinoblastoma in Animal Models and Patients. Transl Vis Sci Technol 2021; 10:10. [PMID: 34495330 PMCID: PMC8431978 DOI: 10.1167/tvst.10.11.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/01/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Through controlled comparative rabbit experiments and parallel patient studies, our purpose was to understand mechanisms underlying differences in efficacy and toxicity between intra-arterial chemotherapy (IAC) and intravenous chemotherapy (IVC). Methods In rabbits, ocular tissue drug levels were measured following IAC and IVC. Retinal toxicity was assessed using electroretinography, fluorescein angiography, optical coherence tomography (OCT) and OCT angiography. Efficacy to eradicate retinoblastoma orthotopic xenografts was compared. In IAC and IVC patients, we measured blood carboplatin pharmacokinetics and compared efficacy and toxicity. Results In rabbits receiving IAC, maximum carboplatin levels were 134 times greater in retina (P = 0.01) and 411 times greater in vitreous (P < 0.001), and total carboplatin (area under the curve) was 123 times greater in retina (P = 0.005) and 131 times greater in vitreous (P = 0.02) compared with IVC. Melphalan levels were 12 times greater (P = 0.003) in retina and 26 times greater in vitreous (P < 0.001) for IAC. Blood levels were not different. IAC melphalan (but not IV melphalan or IV carboplatin, etoposide, and vincristine) caused widespread apoptosis in retinoblastoma xenografts but no functional retinal toxicity or cytopenias. In patients, blood levels following IVC were greater (P < 0.001) but, when adjusted for treatment dose, were not statistically different. Per treatment cycle in patients, IVC caused higher rates of anemia (0.32 ± 0.29 vs. 0.01 ± 0.04; P = 0.0086), thrombocytopenia (0.5 ± 0.42 vs. 0.0 ± 0.0; P = 0.0042), and neutropenia (0.58 ± 0.3 vs. 0.31 ± 0.25; P = 0.032) but lower treatment success rates (P = 0.0017). Conclusions The greater efficacy and lower systemic toxicity with IAC appear to be attributable to the greater ocular-to-systemic drug concentration ratio compared with IVC. Translational Relevance Provides an overarching hypothesis for a mechanism of efficacy/toxicity to guide future drug development.
Collapse
Affiliation(s)
- Anthony B. Daniels
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael T. Froehler
- Cerebrovascular Program, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jessica V. Kaczmarek
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carley M. Bogan
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pranav R. Santapuram
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Janene M. Pierce
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sheau-Chiann Chen
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma A. Schremp
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelli L. Boyd
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuankai K. Tao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Tatsuki Koyama
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ann Richmond
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Debra L. Friedman
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Daniels AB, Pierce JM, Chen SC. Complete preclinical platform for intravitreal chemotherapy drug discovery for retinoblastoma: Assessment of pharmacokinetics, toxicity and efficacy using a rabbit model. MethodsX 2021; 8:101358. [PMID: 34430259 PMCID: PMC8374393 DOI: 10.1016/j.mex.2021.101358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Current melphalan-based intravitreal chemotherapy regimens for retinoblastoma vitreous seeds are effective, but cause significant ocular toxicity. We describe protocols for each step of a drug discovery pipeline for preclinical development of novel drugs to maximize efficacy and minimize toxicity. These protocols include: 1) determination of vitreous pharmacokinetics in vivo, 2) in vitro assessment of drug cytotoxicity against retinoblastoma based on empiric pharmacokinetics, 3) back-calculation of minimum injection dose to achieve therapeutic concentrations, 4) in vivo determination of maximum-tolerable intravitreal dose, using a multimodal, structural and functional toxicity-assessment platform, and 5) in vivo determination of drug efficacy using a rabbit orthotopic xenograft model of retinoblastoma vitreous seeds. We likewise describe our methodology for direct quantitation of vitreous seeds, and the statistical methodology for assessment of toxicity and efficacy in evaluating novel drugs, as well as for comparisons between drugs.•Multi-step pipeline for intravitreal chemotherapy drug discovery for retinoblastoma, using novel rabbit models.•Detailed protocols for determination of vitreous pharmacokinetics, calculation of optimal dose to inject to achieve therapeutic vitreous levels, determination of maximum tolerable dose using a novel complete toxicity-assessment platform, and in vivo efficacy against retinoblastoma using methodology to directly quantify vitreous tumor burden.•Associated statistical methodology is also presented.
Collapse
Affiliation(s)
- Anthony B Daniels
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, United States.,Program in Cancer Biology, Vanderbilt University, Nashville, TN, United States.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Janene M Pierce
- Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sheau-Chiann Chen
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Santapuram PR, Schremp EA, Friedman DL, Koyama T, Froehler MT, Daniels AB. Adverse Events, Treatment Burden, and Outcomes of Intravenous versus Intra-arterial Chemotherapy for Retinoblastoma. Ophthalmol Retina 2021; 5:309-312. [PMID: 32920208 DOI: 10.1016/j.oret.2020.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Pranav R Santapuram
- Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emma A Schremp
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Debra L Friedman
- Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tatsuki Koyama
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael T Froehler
- Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Cerebrovascular Program, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anthony B Daniels
- Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Ocular Oncology and Pathology, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
7
|
Solana-Altabella A, Valero S, Balaguer J, Escobar-Cava P, Barranco H, López E, Ribes-Artero H, Poveda JL. Intravitreal melphalan therapy for vitreous seeds in retinoblastoma: Implementation and outcomes of a new chemotherapy protocol. J Oncol Pharm Pract 2020; 26:1829-1835. [PMID: 32063104 DOI: 10.1177/1078155220904410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Retinoblastoma is the most common paediatric ocular tumour, which appears in the retina. Without treatment, retinoblastoma grows and destroys the internal ocular globe architecture, even leading to metastasis. When treated, overall survival is close to 97%, the alkylating drug melphalan being the most extensively used chemotherapeutic agent in localised treatment. The aim of this study is to describe the implementation of a new intravitreal chemotherapy retinoblastoma treatment protocol for children implanting vitreous seeds through intravitreal melphalan injections and to evaluate the patients' health outcomes treated with it. Between December 2014 and July 2018, seven patients were treated with this protocol. They received a mean of 3.3 cycles of intravitreal melphalan with standard doses of 30 mcg per cycle. In the seven eyes treated in our hospital, the response was as expected; three eyes with vitreous seedings (43%) were successfully treated. The main adverse effects presented by all patients were scars at cryogenisation points. In two patients, the appearance of 'salt and pepper' retinopathy was reported. Oncology pharmacists, as part of the treatment team, can provide information about recommended doses, expected adverse effects, stability of preparations, most appropriate method of processing, packaging, and methods of drug administration, to ensure efficacy and especially safety in the administration of these drugs.
Collapse
Affiliation(s)
| | | | - Julia Balaguer
- H.U.P. La Fe, Paediatric Oncology Department, Valencia, Spain
| | | | - Honorio Barranco
- H.U.P. La Fe, Paediatric Ophthalmology Department, Valencia, Spain
| | | | | | | |
Collapse
|
8
|
|
9
|
Yang Q, Tripathy A, Yu W, Eberhart CG, Asnaghi L. Hypoxia inhibits growth, proliferation, and increases response to chemotherapy in retinoblastoma cells. Exp Eye Res 2017; 162:48-61. [PMID: 28689747 DOI: 10.1016/j.exer.2017.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/01/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022]
Abstract
Retinoblastoma is a malignant tumor of the retina and the most frequent intraocular cancer in children. Low oxygen tension (hypoxia) is a common phenomenon in advanced retinoblastomas, but its biological effect on retinoblastoma growth is not clearly understood. Here we studied how hypoxia altered retinoblastoma gene expression and modulated growth and response to chemotherapy. The hypoxic marker lysyl oxidase (LOX) was expressed in 8 of 12 human retinoblastomas analyzed by immunohistochemistry, suggesting that a hypoxic microenvironment is present in up to two thirds of the cases. WERI Rb1 and Y79 retinoblastoma lines were exposed to 1% or 5% pO2, cobalt chloride (CoCl2), or to normoxia (21% pO2) for up to 8 days. Both 1% and 5% pO2 inhibited growth of both lines by more than 50%. Proliferation was reduced by 25-50% when retinoblastoma cells were exposed to 1% vs 21% pO2, as determined by Ki67 assay. Surprisingly, Melphalan, Carboplatin, and Etoposide produced greater reduction in growth and survival of hypoxic cells than normoxic ones. Gene expression profile analysis of both lines, exposed for 48 h to 1%, 5%, or 21% pO2, showed that glycolysis and glucose transport were the most up-regulated pathways, whereas oxidative phosphorylation was the most down-regulated pathway in hypoxia as compared to normoxia. These data support a role for hypoxia in suppressing growth, proliferation, and enhancing response of retinoblastoma cells to chemotherapy, possibly by impairing energy production through activation of glycolysis and inhibition of mitochondrial respiration. Targeting glucose metabolism or enhancing delivery of chemotherapeutic agents to hypoxic regions may improve treatment of advanced retinoblastomas.
Collapse
Affiliation(s)
- Qian Yang
- Department of Ophthalmology, Second Hospital of Dalian Medical University, Dalian, China; Departments of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Arushi Tripathy
- Departments of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Wayne Yu
- Microarray Core Facility, Sidney Kimmel Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Charles G Eberhart
- Departments of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Ophthalmology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| | - Laura Asnaghi
- Departments of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Yuan S, Friedman DL, Daniels AB. Alternative Chemotherapeutic Agents for the Treatment of Retinoblastoma Using the Intra-Arterial and Intravitreal Routes: A Path Forward Toward Drug Discovery. Int Ophthalmol Clin 2017; 57:129-141. [PMID: 27898619 DOI: 10.1097/iio.0000000000000154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|