1
|
Meyer KJ, Mercer HE, Roos BR, Fingert JH, Anderson MG. Minimal phenotypes in transgenic mice with the human LOXL1/LOXL1-AS1 locus associated with exfoliation glaucoma. Vision Res 2024; 223:108464. [PMID: 39151208 PMCID: PMC11381136 DOI: 10.1016/j.visres.2024.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024]
Abstract
Exfoliation syndrome is a leading cause of secondary glaucoma worldwide. Among the risk-factors for exfoliation syndrome and exfoliation glaucoma that have been investigated, a genetic association with 15q24.1 is among the most striking. The leading candidates for the causal gene at this locus are LOXL1 and/or LOXL1-AS1, but studies have not yet coalesced in establishing, or ruling out, either candidate. Here, we contribute to studies of the 15q24.1 locus by making a partially humanized mouse model in which 166 kb of human genomic DNA from the 15q24.1 locus was introduced into the mouse genome via BAC transgenesis (B6-Tg(RP11-71M11)Andm). Transgenic expression of human genes in the BAC was only detectable for LOXL1-AS1. One cohort of 34 mice (21 experimental hemizygotes and 13 non-carrier control littermates) was assessed by slit-lamp exams and SD-OCT imaging at early (1-2 months) and mid (4-5 months) time points; fundus exams were performed at 5 months of age. A second smaller cohort (3 hemizygotes) were aged extensively (>12 months) to screen for overt abnormalities. Across all genotypes and ages, 136 slit-lamp exams, 128 SD-OCT exams, and 42 fundus exams detected no overt indices of exfoliation syndrome. Quantitatively, small, but statistically significant, age-related declines in ganglion cell complex thickness and total retinal thickness were detected in the hemizygotes at 4 months of age. Overall, this study demonstrates complexity in gene regulation from the 15q24.1 locus and suggests that LOXL1-AS1 is unlikely to be a monogenic cause of exfoliation syndrome but may contribute to glaucomatous retinal damage.
Collapse
Affiliation(s)
- Kacie J Meyer
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States; Institute for Vision Research, University of Iowa, Iowa City, IA, United States
| | - Hannah E Mercer
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States; Institute for Vision Research, University of Iowa, Iowa City, IA, United States
| | - Ben R Roos
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - John H Fingert
- Institute for Vision Research, University of Iowa, Iowa City, IA, United States; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States; Institute for Vision Research, University of Iowa, Iowa City, IA, United States; Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, United States; Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, United States.
| |
Collapse
|
2
|
Meyer KJ, Fingert JH, Anderson MG. Lack of evidence for GWAS signals of exfoliation glaucoma working via monogenic loss-of-function mutation in the nearest gene. Hum Mol Genet 2024:ddae088. [PMID: 38770563 DOI: 10.1093/hmg/ddae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
PURPOSE Exfoliation syndrome (XFS) is a systemic disease of elastin-rich tissues involving a deposition of fibrillar exfoliative material (XFM) in the anterior chamber of the eye, which can promote glaucoma. The purpose of this study was to create mice with CRISPR/Cas9-induced variations in candidate genes identified from human genome-wide association studies (GWAS) and screen them for indices of XFS. METHODS Variants predicted to be deleterious were sought in the Agpat1, Cacna1a, Loxl1, Pomp, Rbms3, Sema6a, and Tlcd5 genes of C57BL/6J mice using CRISPR/Cas9-based gene editing. Strains were phenotyped by slit-lamp, SD-OCT imaging, and fundus exams at 1-5 mos of age. Smaller cohorts of 12-mos-old mice were also studied. RESULTS Deleterious variants were identified in six targets; Pomp was recalcitrant to targeting. Multiple alleles of some targets were isolated, yielding 12 strains. Across all genotypes and ages, 277 mice were assessed by 902 slit-lamp exams, 928 SD-OCT exams, and 358 fundus exams. Homozygosity for Agpat1 or Cacna1a mutations led to early lethality; homozygosity for Loxl1 mutations led to pelvic organ prolapse, preventing aging. Loxl1 homozygotes exhibited a conjunctival phenotype of potential relevance to XFS. Multiple other genotype-specific phenotypes were variously identified. XFM was not observed in any mice. CONCLUSIONS This study did not detect XFM in any of the strains. This may have been due to species-specific differences, background dependence, or insufficient aging. Alternatively, it is possible that the current candidates, selected based on proximity to GWAS signals, are not effectors acting via monogenic loss-of-function mechanisms.
Collapse
Affiliation(s)
- Kacie J Meyer
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd, Iowa City, IA 52242, United States
- Institute for Vision Research, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, United States
| | - John H Fingert
- Institute for Vision Research, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, United States
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics, University of Iowa, 51 Newton Rd, Iowa City, IA 52242, United States
- Institute for Vision Research, University of Iowa, 375 Newton Rd, Iowa City, IA 52242, United States
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, 601 Hwy 6 W, Iowa City, IA 52246, United States
| |
Collapse
|
3
|
Saleh VM, Auda IG, Ali EN. The C/A functional polymorphism of TGF-β2 gene (rs991967) in primary open angle glaucoma patients. Mol Biol Rep 2023; 50:7197-7203. [PMID: 37418083 DOI: 10.1007/s11033-023-08503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/04/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Primary Open-angle Glaucoma (POAG) is a functional disease that.leads to blindness globally. The aims of this study are estimation the importance.of transforming growth factor-beta 2 (TGF-β2) in the pathogenicity of POAG and.to evaluate the effect of the C/A SNP of the TGF-β2 gene (rs991967) on POAG development. METHODS Blood samples and some topographic data were collected from POAG.patients and the controls. The serum level of TGF-β2 was estimated by ELISA.and the C/A SNP of the TGF-β2 gene (rs991967) was determined by RFLP-PCR. RESULTS The males are more susceptible to having POAG (p = 0.0201). The serum.TGF-β2 is higher in POAG patients as compared with the control (p < 0.0001). The.AA (reference) genotype was the most common in the patients (61.7%). While..CC genotype (45.0%, OR: 0.136, 95%CI: 0.05-0.36, P < 0.0001) and AC..genotypes (41.7%, OR: 0.051, 95%CI: 0.01-0.16, P < 0.001) were most common..in the control group. Moreover, the TGF-β2 C allele is protective (OR: 0.25,..95%, CI: 0.15-0.44, P < 0.0001). Patients with AA, CC, and AC genotypes have..significantly high levels of TGF-β2 (P < 0.001) than the control. CONCLUSIONS The males were more susceptible to acquiring POAG than females,.. especially the elderly. The TGF-β2 plays important role in the pathogenesis of POAG. The CC and AC genotypes are common in the control and the C allele is a protective factor.
Collapse
Affiliation(s)
- Vian Mohammed Saleh
- Department of Biology -College of Science-Mustansiriyah University, Baghdad, Iraq.
| | - Ibtesam Ghadban Auda
- Department of Biology -College of Science-Mustansiriyah University, Baghdad, Iraq
| | - Ekhlass N Ali
- Department of Biology -College of Science-Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
4
|
Mansour AM, Konstas AGP, Mansour HA, Charbaji AR, El Jawhari KM. A Case-Cohort Study of Exfoliation Risk Factors and Literature Review. Middle East Afr J Ophthalmol 2021; 28:36-50. [PMID: 34321821 PMCID: PMC8270020 DOI: 10.4103/meajo.meajo_358_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/27/2022] Open
Abstract
The purpose of the study is to evaluate the risk factors associated with exfoliation in a case-cohort setting and literature review. This single-center, prospective, case-cohort study was carried out from January 2010 to April 2020 on patients operated for cataract surgery by a single surgeon in Lebanon. Forty-nine consecutive patients with exfoliation syndrome (XFS) and 62 consecutive control patients were identified and further investigated for selected systemic (diabetes mellitus, systemic hypertension, asthma, or atopy) and ocular variables (baseline vision, severity of nuclear sclerosis, glaucoma, eye rubbing, history of dry eye, or allergic eye disease). The mean baseline Snellen visual acuity was 20/283 in XFS versus 20/145 in control cases (P = 0.012). XFS also demonstrated significantly denser nuclear sclerosis than controls (P = 0.00958). By univariate analysis, allergic conjunctivitis (15 [30.6%] vs. 2 [3.2%]; P < 0.001), dry eye (20 [40.8%] vs. 13 [21.0%]; P = 0.0133), and habitual rubbing of the eyes (33 [67.3%] vs. 19 [30.6%]; P < 0.001) were associated with the presence of XFS. Habitual ocular rubbing was closely associated with allergic conjunctivitis (odds ratio [OR] = 13.0; 95% confidence interval [CI]: 2.8–58.8; P = 0.032). After multivariable analysis, the following variables showed significant results: glaucoma (OR = 34.5; 95% CI: 4.4–250; P = 0.010), duration of surgery (OR = 5.6; 95% CI 2.43–12.9; P < 0.001), and habitual ocular rubbing (OR = 4.42; 95% CI: 1.97–9.90; P = 0.029). This study shows a novel potential correlation between eye rubbing and XFS in a Lebanese cohort. Chronic eye rubbing induces or may exacerbate preexistent zonular damage in subjects with XFS, hence the need to better manage concurrent ocular surface disorder in these patients.
Collapse
Affiliation(s)
- Ahmad M Mansour
- Department of Ophthalmology, American University of Beirut, Beirut, Lebanon.,Department of Ophthalmology, Rafic Hariri University Hospital, Beirut, Lebanon
| | | | - Hana A Mansour
- Department of Ophthalmology, American University of Beirut, Beirut, Lebanon
| | - Abdul R Charbaji
- Department of Statistics and Research Methodology, Lebanese American University, Beirut, Lebanon.,Department of Statistics and Research Methodology, Lebanese University, Beirut, Lebanon
| | | |
Collapse
|
5
|
Skeie JM, Nishimura DY, Wang CL, Schmidt GA, Aldrich BT, Greiner MA. Mitophagy: An Emerging Target in Ocular Pathology. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 33724294 PMCID: PMC7980050 DOI: 10.1167/iovs.62.3.22] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial function is essential for the viability of aerobic eukaryotic cells, as mitochondria provide energy through the generation of adenosine triphosphate (ATP), regulate cellular metabolism, provide redox balancing, participate in immune signaling, and can initiate apoptosis. Mitochondria are dynamic organelles that participate in a cyclical and ongoing process of regeneration and autophagy (clearance), termed mitophagy specifically for mitochondrial (macro)autophagy. An imbalance in mitochondrial function toward mitochondrial dysfunction can be catastrophic for cells and has been characterized in several common ophthalmic diseases. In this article, we review mitochondrial homeostasis in detail, focusing on the balance of mitochondrial dynamics including the processes of fission and fusion, and provide a description of the mechanisms involved in mitophagy. Furthermore, this article reviews investigations of ocular diseases with impaired mitophagy, including Fuchs endothelial corneal dystrophy, primary open-angle glaucoma, diabetic retinopathy, and age-related macular degeneration, as well as several primary mitochondrial diseases with ocular phenotypes that display impaired mitophagy, including mitochondrial encephalopathy lactic acidosis stroke, Leber hereditary optic neuropathy, and chronic progressive external ophthalmoplegia. The results of various studies using cell culture, animal, and human tissue models are presented and reflect a growing awareness of mitophagy impairment as an important feature of ophthalmic disease pathology. As this review indicates, it is imperative that mitophagy be investigated as a targetable mechanism in developing therapies for ocular diseases characterized by oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jessica M. Skeie
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Darryl Y. Nishimura
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Cheryl L. Wang
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | | | - Benjamin T. Aldrich
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Mark A. Greiner
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| |
Collapse
|
6
|
Abstract
Exfoliation syndrome (XFS) produces deleterious ocular aging and has protean systemic manifestations. Local ocular production of TGFβ1 is of central importance in XFS. TGFβ1 appears to induce the expression of LOXL1 and the production of other extracellular matrix components which are known to be present in exfoliation material. Furthermore, results from several studies find that the aqueous humor of exfoliation glaucoma patients exhibits a decreased antioxidant defense and increased oxidative stress systems. Finally, studies show that the levels of interleukin-6 and interleukin-8 in the aqueous humor of XFS patients were 3-fold higher than in controls. Overall TGFβ1, as well as a prooxidative and proinflammatory environment seems to play an important role in XFS.
Collapse
Affiliation(s)
- Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
7
|
Nyerhovwo JT, Egbune EO, Oghenetega JA, Eferhire A, Osuvwe CO, Akpovwehwee AA. A novel pig feed formulation containing Aspergillus niger CSA35 pretreated-cassava peels and its effect on growth and selected biochemical parameters of pigs. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2015.15181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Correction of Pathological Morphofunctional Changes in the Mammalian Retina. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9549-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Elevated intraocular pressure decreases response sensitivity of inner retinal neurons in experimental glaucoma mice. Proc Natl Acad Sci U S A 2015; 112:2593-8. [PMID: 25675503 DOI: 10.1073/pnas.1419921112] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glaucoma is the second leading cause of blindness in the United States and the world, characterized by progressive degeneration of the optic nerve and retinal ganglion cells (RGCs). Glaucoma patients exhibit an early diffuse loss of retinal sensitivity followed by focal loss of RGCs in sectored patterns. Recent evidence has suggested that this early sensitivity loss may be associated with dysfunctions in the inner retina, but detailed cellular and synaptic mechanisms underlying such sensitivity changes are largely unknown. In this study, we use whole-cell voltage-clamp techniques to analyze light responses of individual bipolar cells (BCs), AII amacrine cells (AIIACs), and ON and sustained OFF alpha-ganglion cells (ONαGCs and sOFFαGCs) in dark-adapted mouse retinas with elevated intraocular pressure (IOP). We present evidence showing that elevated IOP suppresses the rod ON BC inputs to AIIACs, resulting in less sensitive AIIACs, which alter AIIAC inputs to ONαGCs via the AIIAC→cone ON BC→ONαGC pathway, resulting in lower ONαGC sensitivity. The altered AIIAC response also reduces sOFFαGC sensitivity via the AIIAC→sOFFαGC chemical synapses. These sensitivity decreases in αGCs and AIIACs were found in mice with elevated IOP for 3-7 wk, a stage when little RGC or optic nerve degeneration was observed. Our finding that elevated IOP alters neuronal function in the inner retina before irreversible structural damage occurs provides useful information for developing new diagnostic tools and treatments for glaucoma in human patients.
Collapse
|