1
|
Retinal nerve fibre layer thickness measurements in childhood glaucoma: the role of scanning laser polarimetry and optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2021; 259:3777-3786. [PMID: 34173881 PMCID: PMC8589798 DOI: 10.1007/s00417-021-05276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/11/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose A central diagnostic tool in adult glaucoma is the peripapillary retinal nerve fibre layer (pRNFL) thickness. It can be assessed by scanning laser polarimetry (SLP) or optical coherence tomography (OCT). However, studies investigating the relevance of pRNFL measurements in children are rare. This study aims to compare the glaucoma diagnosing ability of SLP and OCT pRNFL thickness measurements in a paediatric population. Methods This retrospective study included 105 children (glaucoma: 22 (21.0%); healthy glaucoma suspects: 83 (79.0%)) aged 4–18 years, examined with SLP (GDxPro/ECC, Carl Zeiss Meditec) and spectral-domain OCT (SPECTRALIS®, Heidelberg Engineering). The thickness of pRNFL sectors was compared between diseased and healthy participants. Areas under the receiver-operating characteristic curves (AUC) and logistic regression results were used to compare the glaucoma discriminative capacity between SLP and OCT measurements. Results Using OCT, pRNFL thickness was decreased in the superior, nasal, and inferior quadrants of glaucoma patients compared to healthy controls (P < 0.001, each). With SLP, such a difference was only observed in the inferior quadrant (P = 0.011). A correlation between glaucoma diagnosis and OCT-measured pRNFL thickness was found in all quadrants (P < 0.001) other than the temporal. With SLP, a correlation was found for the total average thickness (P = 0.037) and inferior quadrant (P = 0.0019). Finally, the AUCs of OCT measurements were markedly higher than those of SLP (e.g., inferior quadrant: OCT 0.83, SLP 0.68). Conclusion pRNFL thickness measurements using both OCT and SLP, correlate notably with the presence of glaucoma. In general, the diagnostic performance of pRNFL thickness measurements seems higher for OCT than for SLP. Thus, pRNFL thickness measurements could provide important information, complementing conventional clinical and functional parameters in the diagnostic process of paediatric glaucoma.
![]()
Collapse
|
2
|
Takahashi N, Matsunaga N, Natsume T, Kitazawa C, Itani Y, Hama A, Hayashi I, Shimazawa M, Hara H, Takamatsu H. A longitudinal comparison in cynomolgus macaques of the effect of brimonidine on optic nerve neuropathy using diffusion tensor imaging magnetic resonance imaging and spectral domain optical coherence tomography. Heliyon 2021; 7:e06701. [PMID: 33898826 PMCID: PMC8056221 DOI: 10.1016/j.heliyon.2021.e06701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 01/04/2021] [Accepted: 03/31/2021] [Indexed: 10/26/2022] Open
Abstract
Early detection of optic neuropathy is crucial for initiating treatment that could delay or prevent visual field loss. Preclinical studies have advanced a number of potential neuroprotective strategies to prevent retinal ganglion cell (RGC) degeneration, but none have successfully completed clinical trials. One issue related to the lack of preclinical to clinical translation is the lack of preclinical morphometric assessments that could be used to track neuroprotection, as well as neurodegeneration, over time within the same animal. Thus, to assess whether clinically used morphometric assessments can identify neuroprotection of RGC, the current study compared optic nerve fractional anisotropy (FA) obtained with diffusion tensor imaging (DTI) and retinal nerve fiber layer (RNFL) thickness measured with spectral domain optical coherence tomography (SD-OCT) to observe not only the early progression of RGC axonal degeneration but to also discern which imaging modality identifies signs of neuroprotection during treatment with the alpha-adrenoceptor agonist brimonidine. Elevated and sustained intraocular pressure (IOP) was observed following laser photocoagulation of the trabecular meshwork in one eye of nonhuman primates (NHP). Either brimonidine (0.1%) or control treatment was instilled twice daily for two months. In control-treated eyes, increased IOP, increased vertical cup-to-disc (C/D), reduced rim-to-disc (R/D) ratio, decreased RNFL thickness and decreased FA were observed. While IOP remained elevated during the course of the study, brimonidine tended to delay the progression of RNFL thinning. However, in the same animal, optic nerve FA did not appear to decline. Brimonidine treatment did not affect other measures of RGC axonal degeneration. The current findings demonstrate that early progression of optic neuropathy can be tracked over time in a nonhuman primate model of ocular hypertension using either DTI or SD-OCT. Furthermore, the delayed changes to RNFL thickness and FA appear to be a neuroprotective effect of brimonidine independent of its effect on IOP.
Collapse
Affiliation(s)
- Nobuyuki Takahashi
- Pharmacology, Hamamatsu Pharma Research, Inc., 1-3-7, Shinmiyakoda, Kita-ku, Hamamatsu, Shizuoka, 431-2103, Japan
| | - Naoko Matsunaga
- Pharmacology, Hamamatsu Pharma Research, Inc., 1-3-7, Shinmiyakoda, Kita-ku, Hamamatsu, Shizuoka, 431-2103, Japan
| | - Takahiro Natsume
- Pharmacology, Hamamatsu Pharma Research, Inc., 1-3-7, Shinmiyakoda, Kita-ku, Hamamatsu, Shizuoka, 431-2103, Japan
| | - Chinatsu Kitazawa
- Pharmacology, Hamamatsu Pharma Research, Inc., 1-3-7, Shinmiyakoda, Kita-ku, Hamamatsu, Shizuoka, 431-2103, Japan
| | - Yoshitaka Itani
- Pharmacology, Hamamatsu Pharma Research, Inc., 1-3-7, Shinmiyakoda, Kita-ku, Hamamatsu, Shizuoka, 431-2103, Japan
| | - Aldric Hama
- Pharmacology, Hamamatsu Pharma Research, Inc., 1-3-7, Shinmiyakoda, Kita-ku, Hamamatsu, Shizuoka, 431-2103, Japan
| | - Ikuo Hayashi
- Hamamatsu Pharma Research USA, Inc., 4660 La Jolla Village Drive, San Diego, CA, 92122 USA
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hiroyuki Takamatsu
- Pharmacology, Hamamatsu Pharma Research, Inc., 1-3-7, Shinmiyakoda, Kita-ku, Hamamatsu, Shizuoka, 431-2103, Japan
| |
Collapse
|