1
|
Wang Q, Qu X, Wang H, Chen W, Sun Y, Li T, Chen J, Wang Y, Wang N, Xian J. Arterial spin labeling reveals disordered cerebral perfusion and cerebral blood flow-based functional connectivity in primary open-angle glaucoma. Brain Imaging Behav 2024; 18:231-242. [PMID: 38006574 PMCID: PMC10844339 DOI: 10.1007/s11682-023-00813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 11/27/2023]
Abstract
PURPOSE Primary open-angle glaucoma (POAG) is a widespread neurodegenerative condition affecting brain regions involved in visual processing, somatosensory processing, motor control, emotional regulation and cognitive functions. Cerebral hemodynamic dysfunction contributes to the pathogenesis of glaucomatous neurodegeneration. We aimed to investigate cerebral blood flow (CBF) redistributed patterns in visual and higher-order cognitive cortices and its relationship with clinical parameters in POAG, and we hypothesized that CBF changes together across regions within the same functional network. METHODS Forty-five POAG patients and 23 normal controls underwent three-dimensional pseudocontinuous arterial spin labeling MRI to measure the resting-state CBF. Group comparisons of CBF and correlations between CBF changes and ophthalmological and neuropsychological indices were assessed. We determined CBF-based functional connectivity (CBFC) by calculating the correlations between specific regions and all other brain voxels and compared CBFC differences between groups. RESULTS The patients exhibited decreased CBF in visual cortices, postcentral gyrus, inferior parietal lobule and cerebellum and increased CBF in medial, middle, and superior frontal gyri, as well as the insula. The reduced CBF in the visual cortices positively correlated with visual field defect (r = 0.498, p = 0.001) in POAG patients, while the increased CBF in the right medial frontal gyrus was negatively associated with the visual field defect (r = -0.438, p = 0.004) and positively associated with the cup-to-disc ratio (r = 0.469, p = 0.002). POAG patients showed negative connections weakening or converting to mild positive connections, as well as positive connections converting to negative connections. CONCLUSIONS Regional and interregional CBF properties confirmed that the aberrant brain regions extend beyond the visual pathway, including the somatosensory, emotional and cognitive networks, which highlights the importance of cerebral hemodynamic dysfunction in the pathophysiology of spreading neurodegeneration in POAG.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, NO.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Xiaoxia Qu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, NO.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Huaizhou Wang
- Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, NO.1 Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
- Beijing Institute of Ophthalmology, Capital Medical University, Beijing Tongren Hospital, 17 Hougou Lane, Chongwenmen, Beijing, 100005, China
| | - Weiwei Chen
- Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, NO.1 Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
- Beijing Institute of Ophthalmology, Capital Medical University, Beijing Tongren Hospital, 17 Hougou Lane, Chongwenmen, Beijing, 100005, China
| | - Yunxiao Sun
- Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, NO.1 Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
- Beijing Institute of Ophthalmology, Capital Medical University, Beijing Tongren Hospital, 17 Hougou Lane, Chongwenmen, Beijing, 100005, China
| | - Ting Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, NO.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Jianhong Chen
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, NO.1 Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China.
- Beijing Institute of Ophthalmology, Capital Medical University, Beijing Tongren Hospital, 17 Hougou Lane, Chongwenmen, Beijing, 100005, China.
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, NO.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
2
|
Carvalho J, Invernizzi A, Martins J, Renken RJ, Cornelissen FW. Local neuroplasticity in adult glaucomatous visual cortex. Sci Rep 2022; 12:21981. [PMID: 36539453 PMCID: PMC9767937 DOI: 10.1038/s41598-022-24709-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
The degree to which the adult human visual cortex retains the ability to functionally adapt to damage at the level of the eye remains ill-understood. Previous studies on cortical neuroplasticity primarily focused on the consequences of foveal visual field defects (VFD), yet these findings may not generalize to peripheral defects such as occur in glaucoma. Moreover, recent findings on neuroplasticity are often based on population receptive field (pRF) mapping, but interpreting these results is complicated in the absence of appropriate control conditions. Here, we used fMRI-based neural modeling to assess putative changes in pRFs associated with glaucomatous VFD. We compared the fMRI-signals and pRF in glaucoma participants to those of controls with case-matched simulated VFD. We found that the amplitude of the fMRI-signal is reduced in glaucoma compared to control participants and correlated with disease severity. Furthermore, while coarse retinotopic structure is maintained in all participants with glaucoma, we observed local pRF shifts and enlargements in early visual areas, relative to control participants. These differences suggest that the adult brain retains some degree of local neuroplasticity. This finding has translational relevance, as it is consistent with VFD masking, which prevents glaucoma patients from noticing their VFD and seeking timely treatment.
Collapse
Affiliation(s)
- Joana Carvalho
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands ,grid.421010.60000 0004 0453 9636Pre-Clinical MRI Laboratory, Champalimaud Centre for the Unknown, Avenida de Brasilia, 1400-038 Lisbon, Portugal
| | - Azzurra Invernizzi
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands ,grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Joana Martins
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Remco J. Renken
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frans W. Cornelissen
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Zhu W, Liu T, Li M, Sun X, He S. Activation of lesion projection zone in primary visual cortex is dependent on bilateral central vision loss in patients with end-stage glaucoma. Ophthalmic Physiol Opt 2022; 42:1159-1169. [PMID: 36044240 DOI: 10.1111/opo.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate activation of the lesion projection zone (LPZ) in the primary visual cortex during end-stage glaucoma using functional magnetic resonance imaging (fMRI), as well as the relationship between fMRI responses and clinical data. METHODS Twelve subjects with bilateral end-stage glaucoma (group A), 12 with unilateral end-stage glaucoma (group B) and 12 healthy controls (group C) were enrolled. fMRI was performed under two testing stimuli conditions: passive viewing of a full-field flickering checkerboard and active viewing of a one-back task with scene images. In fMRI analysis, the primary visual cortex was divided into six regions of interest (ROIs). The beta values of the six ROIs were compared across the three groups using one-way analysis of variance under two viewing conditions. Associations between the fMRI beta value and clinical data including multifocal electroretinogram (mfERG), microperimeter-1 and optical coherence tomography were analysed by Spearman correlation. RESULTS The beta values for ROIs 1-3 representing the LPZ were significantly different between the three groups under active viewing conditions, whereas no significant changes were detected under passive viewing. In group A, there were significant differences between all six ROIs for the two viewing conditions, while no significant differences were found in groups B and C. In group A, the P-wave amplitudes of the mfERG was significantly correlated with the beta values of ROIs 1 and 2 under active viewing. In addition, the P-wave latencies of the mfERG were significantly correlated with the beta values for ROIs 2-5. No associations were found between fMRI beta values and clinical data in groups B and C. CONCLUSIONS Activation of the LPZ in the primary visual cortex was observed in patients with bilateral end-stage glaucoma under active viewing conditions. These changes were correlated with residual retinal function.
Collapse
Affiliation(s)
- Wenqing Zhu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tingting Liu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengwei Li
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Yan Z, Liao H, Deng C, Zhong Y, Mayeesa TZ, Zhuo Y. DNA damage and repair in the visual center in the rhesus monkey model of glaucoma. Exp Eye Res 2022; 219:109031. [DOI: 10.1016/j.exer.2022.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/27/2022] [Accepted: 03/06/2022] [Indexed: 11/04/2022]
|
5
|
Brain Functional Network Analysis of Patients with Primary Angle-Closure Glaucoma. DISEASE MARKERS 2022; 2022:2731007. [PMID: 35035609 PMCID: PMC8758296 DOI: 10.1155/2022/2731007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
Objectives. Recent resting-state functional magnetic resonance imaging (fMRI) studies have focused on glaucoma-related neuronal degeneration in structural and spontaneous functional brain activity. However, there are limited studies regarding the differences in the topological organization of the functional brain network in patients with glaucoma. In this study, we aimed to assess both potential alterations and the network efficiency in the functional brain networks of patients with primary angle-closure glaucoma (PACG). Methods. We applied resting-state fMRI data to construct the functional connectivity network of 33 patients with PACG (
) and 33 gender- and age-matched healthy controls (
). The differences in the global and regional topological brain network properties between the two groups were assessed using graph theoretical analysis. Partial correlations between the altered regional values and clinical parameters were computed for patients with PACG. Results. No significant differences in global topological measures were identified between the two groups. However, significant regional alterations were identified in the patients with PACG, including differences within visual and nonvisual (somatomotor and cognition-emotion) regions. The normalized clustering coefficient and normalized local efficiency of the right superior parietal gyrus were significantly correlated with the retinal fiber layer thickness (RNFLT) and the vertical cup to disk ratio (V C/D). In addition, the normalized node betweenness of the left middle frontal gyrus (orbital portion) was significantly correlated with the V C/D in the patients with PACG. Conclusions. Our results suggest that regional inefficiency with decrease and compensatory increase in local functional properties of visual and nonvisual nodes preserved the brain network of the PACG at the global level.
Collapse
|
6
|
Nuzzi R, Vitale A. Cerebral Modifications in Glaucoma and Macular Degeneration: Analysis of Current Evidence in Literature and Their Implications on Therapeutic Perspectives. Eye Brain 2021; 13:159-173. [PMID: 34168513 PMCID: PMC8216745 DOI: 10.2147/eb.s307551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
Glaucoma and macular degeneration are leading causes of irreversible blindness, significantly compromising the quality of life and having a high economic and social impact. Promising therapeutic approaches aimed at regenerating or bypassing the damaged anatomical-functional components are currently under development: these approaches have generated great expectations, but to be effective require a visual network that, despite the pathology, maintains its integrity up to the higher brain areas. In the light of this, the existing findings concerning how the central nervous system modifies its connections following the pathological damage caused by glaucoma and macular degeneration acquire great interest. This review aims to examine the scientific literature concerning the morphological and functional changes affecting the central nervous system in these pathological conditions, summarizing the evidence in an analytical way, discussing their possible causes and highlighting the potential repercussions on the current therapeutic perspectives.
Collapse
Affiliation(s)
- Raffaele Nuzzi
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, 10126, Italy
| | - Alessio Vitale
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, 10126, Italy
| |
Collapse
|
7
|
Hou Y, Song S, Sun J, Wang H, Wang Y, Wang Z, Li J, Li H. Non-invasive Diagnosis and Prognosis Values of 3D Pseudocontinuous Arterial Spin Labeling and Optical Coherence Tomography Angiography in Proliferative Diabetic Retinopathy. Front Med (Lausanne) 2021; 8:682708. [PMID: 34150814 PMCID: PMC8211895 DOI: 10.3389/fmed.2021.682708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/12/2021] [Indexed: 11/27/2022] Open
Abstract
Background: 3D Pseudocontinuous Arterial Spin Labeling (3D-PCASL) MRI and optical coherence tomography angiography (OCTA) have been applied to detect ocular blood flow (BF). We aim to characterize the ocular BF in diabetic retinopathy (DR) using 3D-PCASL and OCTA, to discuss the relationship between ocular and cerebral BF, and to evaluate their potential utility to assess the severity of DR. Methods: A total of 66 participants (132 eyes) were included. Seventy-two eyes were classified in the proliferative diabetic retinopathy (PDR) group, and 60 were in the non-proliferative diabetic retinopathy NPDR group. Ocular and cerebral BF values were detected by 3D-PCASL using a 3.0T MRI scanner with two post-labeling delays (PLDs). Vessel density (VD)/perfusion density (PD) of the macular or peripapillary area were detected by OCTA. Parameters and clinical characteristics were compared between the PDR and NPDR eyes utilizing two-sample t-tests and chi-square tests. Spearman's rank correlation analysis, logistic regression analysis, and receiver operating characteristic curves (ROC) analyses were performed to evaluate the factors' role in DR severity. Results: The perfusions of the retinal/choroidal plexus (RCP), optic nerve head (ONH)/optic nerve (ON), and VD/PD of macular/peripapillary area in the PDR group were significantly lower compared to the NPDR group (p < 0.05). They were protective factors for PDR [ORs = 0.842 for RCP (1.5 s PLD), 0.910 for ONH (1.5 s PLD), 0.905 for ON (both 1.5 and 2.5 s PLD), 0.707 for macular VD, 0.652 for peripapillary VD, p < 0.05, respectively]. Ocular BF had a positive correlation with BF of the occipital lobe (OL) and temporal lobe (TL) in the cerebrum. The BF of RCP (lower than 7.825 mL/min/100 g at 1.5 s PLD) indicated PDR [areas under the curve (AUCs) = 0.682, 95% CI: 0.588–0.777, sensitivity: 70.7% specificity: 63.9%]. The AUC of RCP (PLD = 1.5 s) BF combined with peripapillary VD was 0.841 (95% CI: 0.588–0.777, sensitivity: 75.9% specificity: 82.9%). Conclusions: 3D-pcASL and OCTA may be effective non-invasive methods to measure ocular blood flow in DR patients and assess the severity of DR.
Collapse
Affiliation(s)
- Yanli Hou
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuai Song
- Deparment of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiao Sun
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huihui Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongyang Li
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Wang Q, Qu X, Chen W, Wang H, Huang C, Li T, Wang N, Xian J. Altered coupling of cerebral blood flow and functional connectivity strength in visual and higher order cognitive cortices in primary open angle glaucoma. J Cereb Blood Flow Metab 2021; 41:901-913. [PMID: 32580669 PMCID: PMC7983497 DOI: 10.1177/0271678x20935274] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 01/30/2023]
Abstract
Primary open-angle glaucoma (POAG) has been suggested to be a neurodegenerative disease associated with altered cerebral vascular hemodynamics and widespread disruption of neuronal activity within the visual, working memory, attention and executive networks. We hypothesized that disturbed neurovascular coupling in visual and higher order cognitive cortices exists in POAG patients and correlates with glaucoma stage and visual field defects. Through multimodal magnetic resonance imaging, we evaluated the cerebral blood flow (CBF)-functional connectivity strength (FCS) correlations of the whole gray matter and CBF/FCS ratio per voxel for all subjects. Compared with normal controls, POAG patients showed reduced global CBF-FCS coupling and altered CBF/FCS ratios, predominantly in regions in the visual cortex, salience network, default mode network, and dorsal attentional network. The CBF/FCS ratio was negatively correlated with glaucoma stage, and positively correlated with visual field defects in the lingual gyrus in POAG patients. Moreover, early brain changes were detected in early POAG. These findings indicate neurovascular coupling dysfunction might exist in the visual and higher order cognitive cortices in POAG patients and its clinical relevance. The results may contribute to the monitoring of POAG progression and provide insight into the pathophysiology of the neurodegenerative process in POAG.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaoxia Qu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Weiwei Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University
| | - Huaizhou Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University
| | - Caiyun Huang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ting Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Huang X, Wen Z, Tong Y, Qi CX, Shen Y. Altered resting cerebral blood flow specific to patients with diabetic retinopathy revealed by arterial spin labeling perfusion magnetic resonance imaging. Acta Radiol 2021; 62:524-532. [PMID: 32551803 DOI: 10.1177/0284185120932391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous neuroimaging studies have shown that patients with diabetic retinopathy (DR) were accompanied by abnormalities in cerebral functional and structural architecture, whereas the resting cerebral blood flow (CBF) alterations in patients with DR are not well understood. PURPOSE To explore CBF alterations in patients with DR using pseudo-continuous arterial spin labeling (pCASL) imaging. MATERIAL AND METHODS Thirty-one individuals with DR (15 men, 16 women; mean age = 53.38 ± 9.12 years) and 33 healthy controls (HC) (12 men, 21 women; mean age = 51.61 ± 9.84 years) closely matched for age, sex, and education, underwent pCASL imaging scans. Two-sample T test was conducted to compare different CBF values between two groups. RESULTS Patients with DR exhibited significantly increased CBF values in the left middle temporal gyrus (Brodmann's area, BA 22) and the bilateral supplementary motor area (BA3) and decreased CBF values in the bilateral calcarine (BA17,18) and bilateral caudate relative to HC group (two-tailed, voxel level at P < 0.01, Gaussian random field (GRF), cluster level at P < 0.05). Moreover, the HbA1c (%) level showed a positive correlation with CBF values in the bilateral caudate (r = 0.473, P = 0.007) in patients with DR. CONCLUSION Our results highlighted that patients with DR had abnormal CBF values in the visual cortices, caudate, middle temporal gyrus, and supplementary motor area, which might reflect vision and sensorimotor and cognition dysfunction in patients with DR. These findings might help us to understanding the neural mechanism of patients with DR.
Collapse
Affiliation(s)
- Xin Huang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yan Tong
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Chen-Xing Qi
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
- Medical Research Institute, Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|
10
|
Arslan GD, Olgun A, Ozcan D, Gökcal E, Guven D, Asil T. Assessment of Cerebral Vasomotor Reactivity in Patients With Primary Open-angle Glaucoma and Ocular Hypertension Using the Breath-Holding Index. J Glaucoma 2021; 30:157-163. [PMID: 33074963 DOI: 10.1097/ijg.0000000000001711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/03/2020] [Indexed: 11/26/2022]
Abstract
PRCIS Patients with ocular hypertension (OHT) do not show impaired cerebral vasodilation responses to hypercapnia but patients with primary open-angle glaucoma (POAG) do. Impaired vasoreactivity in patients with POAG may have neuronal or vascular origins and increase stroke risk. PURPOSE To investigate changes in cerebral blood flow and cerebral vasomotor reactivity using the breath-holding index in patients with POAG and OHT, to examine whether these parameters contribute to the risk of ischemic stroke. METHODS Thirty patients with POAG, 30 patients with OHT, and 30 age- and sex-matched healthy control subjects were included in this university hospital-based, cross-sectional, and observational study. Eyes with a greater degree of visual field loss and/or more severe optic disc damage were selected for the study in patients with POAG, whereas in patients with OHT and controls, the study eye was chosen randomly. The mean blood flow velocity and breath-holding index were measured in the middle cerebral artery ipsilaterally in patient and control groups, by using transcranial Doppler ultrasonography. RESULTS The mean blood flow velocity and breath-holding indexes were significantly lower in patients with POAG than in the control group (all P<0.05). In the OHT group, the mean blood flow velocity and breath-holding indexes were not different from those in the control group. CONCLUSIONS Patients with POAG have impaired vasodilation response to hypercapnia. Presumably, the neuronal changes and deterioration of the endothelium-mediated vasodilatation in patients with glaucoma may disrupt the regulation of arteries and potentially present functional insufficiency on vasoreactivity. Moreover, impaired cerebral vascular regulation may contribute to the increased risk of stroke in patients with POAG.
Collapse
Affiliation(s)
| | | | - Delil Ozcan
- Department of Ophthalmology, University of Health Sciences Şişli Hamidiye Etfal Training and Research Hospital
| | - Elif Gökcal
- Department of Neurology, Bezmialem Vakif University School of Medicine, Istanbul, Turkey
| | - Dilek Guven
- Department of Ophthalmology, University of Health Sciences Şişli Hamidiye Etfal Training and Research Hospital
| | - Talip Asil
- Department of Neurology, Bezmialem Vakif University School of Medicine, Istanbul, Turkey
| |
Collapse
|
11
|
Song J, Cui S, Chen Y, Ye X, Huang X, Su H, Zhou Y, Liu X, Chen W, Shan X, Yan Z, Liu K. Disrupted Regional Cerebral Blood Flow in Children With Newly-Diagnosed Type 1 Diabetes Mellitus: An Arterial Spin Labeling Perfusion Magnetic Resonance Imaging Study. Front Neurol 2020; 11:572. [PMID: 32636800 PMCID: PMC7316953 DOI: 10.3389/fneur.2020.00572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
Object: Diabetes is associated with cerebral vascular dysfunction and increased vascular cognitive impairment. The objective of this study was to use arterial spin labeling (ASL) perfusion-weighted magnetic resonance imaging to investigate whether cerebral perfusion was changed in newly-diagnosed children with type 1 diabetes mellitus (T1DM) and the possible relationship between aberrant cerebral blood flow (CBF) with cognitive as well as clinical variables. Methods: Between January 2017 and February 2018, 34 children with newly-diagnosed T1DM and 34 age, gender, and education-matched healthy controls were included. Three dimensional pseudo-continuous ASL perfusion MRI was used to evaluate CBF. A conventional T2WI sequence was added to exclude intracranial disease. Regions with CBF differences between T1DM children and the controls were detected via voxel-wise comparisons in REST software. Associations among the result of neuropsychological test, clinical variables, and CBF values of different brains were investigated by using partial correlation analysis. Results: Compared with the controls, T1DM children show decreased CBF in the left calcarine and postcentral gyrus, and right precentral gyrus. The perfusion in the postcentral gyrus was positively correlated with IQ performance. No significant correlations were found between CBF and HbA1c, blood glucose level before imaging and IQ in other brain regions in T1DM children. Conclusion: There is an abnormal cerebral perfusion in children with newly diagnosed T1DM. The visual and sensorimotor areas are brain areas where perfusion is prone to change at the beginning of T1DM. Our study provided clues for cerebral pathophysiological changes in the initial stage of T1DM.
Collapse
Affiliation(s)
- Jiawen Song
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shihan Cui
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yaomeng Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinjian Ye
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiyan Su
- Department of Pediatric Endocrine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongjin Zhou
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoou Shan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kun Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Altered information flow and microstructure abnormalities of visual cortex in normal-tension glaucoma: Evidence from resting-state fMRI and DKI. Brain Res 2020; 1741:146874. [PMID: 32389589 DOI: 10.1016/j.brainres.2020.146874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/19/2020] [Accepted: 05/03/2020] [Indexed: 11/20/2022]
Abstract
Normal tension glaucoma (NTG) is a neurodegenerative disease involves multiple brain areas, but the mechanism remains unclear. The aim of this study is to investigate the correlation between structural injury and functional reorganization in the brain of NTG, using resting-state functional MRI and diffusion kurtosis imaging (DKI) data acquired for 26 NTG patients and 24 control subjects. Granger causality analysis (GCA) was used to calculate the effective connectivity (EC) between visual cortices and the whole brain to reflect the information flow. The fractional anisotropy (FA), mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK) derived from DKI of visual cortices were extracted to evaluate structural injury. Microstructural abnormalities were detected in bilateral BA17, BA18, and BA19. NTG patients showed significantly decreased EC from BA17 to higher visual cortices and increase EC from higher visual cortices to BA17. The EC from BA17 to posterior cingulate cortex (PCC) and from PCC to BA17 both significantly increased, while the EC from right BA18 and BA19 to PCC significantly decreased. Decreased EC between somatosensory cortex and BA17, as well as the decreased ECs between supramarginal gyrus (SMA) and BA17/BA19 were detected. Several abnormal ECs were significantly correlated with microstructural injuries of BA17 and BA18. In conclusion, NTG causes reorganization of information flows among visual cortices and other brain areas, which is consistent with brain microstructural injury.
Collapse
|
13
|
Philip S, Najafi A, Tantraworasin A, Pasquale LR, Ritch R. Nailfold Capillaroscopy of Resting Peripheral Blood Flow in Exfoliation Glaucoma and Primary Open-Angle Glaucoma. JAMA Ophthalmol 2020; 137:618-625. [PMID: 30973595 DOI: 10.1001/jamaophthalmol.2019.0434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance Systemic blood flow alterations have been described using video nailfold capillaroscopy (NFC) in high-tension glaucoma (HTG) and normal-tension glaucoma (NTG) variants of primary open-angle glaucoma (POAG). To date, no previous studies have explored alterations in nailfold capillary blood flow in exfoliation glaucoma (XFG). Objective To investigate the measure of peripheral blood flow as a surrogate marker of systemic vascular involvement in patients with XFG, HTG, and NTG, as well as in individuals serving as controls, using NFC. Design, Setting, and Participants A cross-sectional clinic-based study at the New York Eye and Ear Infirmary of Mount Sinai was conducted from July 6, 2017, to May 18, 2018. A total of 111 participants (30 XFG, 30 NTG, 30 HTG, and 21 controls) received a comprehensive ophthalmic examination to confirm eligibility. Exclusion criteria were the presence of connective tissue disease, uncontrolled diabetes, history of bleeding disorders, and/or history of trauma or surgery to the nondominant hand. Main Outcomes and Measures Resting capillary blood flow at the nailfold of the fourth digit of the nondominant hand in patients with NTG, HTG, XFG, and controls, using NFC. Results Two participants were excluded owing to poor nailfold image quality, resulting in 109 participants. Sixty-two participants (57%) were women and 79 (72%) were white. Mean (SD) age of the participants was 67.9 (11.7) years. Mean (SD) resting peripheral capillary blood flow at the nailfold for controls was 70.9 (52.4) picoliters/s (pL/s); HTG, 47.5 (41.9) pL/s; NTG, 40.1 (16.6) pL/s; and XFG, 30.6 (20.0) pL/s. Multivariable analysis of the differences of flow in HTG vs control participants showed values of -18.97 (95% CI, -39.22 to 1.27; P = .07) pL/s, NTG vs controls of -25.17 (95% CI, -45.92 to -4.41; P = .02) pL/s, and XFG vs controls of -28.99 (95% CI, -51.35 to -6.63; P = .01) pL/s. Conclusions and Relevance Decreased resting peripheral capillary blood flow may occur in patients with XFG and NTG compared with individuals without glaucoma. These findings may contribute to understanding the possible systemic nature of glaucoma.
Collapse
Affiliation(s)
- Shawn Philip
- Einhorn Clinical Research Center, Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York
| | - Ahmad Najafi
- Einhorn Clinical Research Center, Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York
| | - Apichat Tantraworasin
- Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Louis R Pasquale
- Einhorn Clinical Research Center, Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Robert Ritch
- Einhorn Clinical Research Center, Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York
| |
Collapse
|
14
|
Cerebral Blood Flow Alterations in High Myopia: An Arterial Spin Labeling Study. Neural Plast 2020; 2020:6090262. [PMID: 32399025 PMCID: PMC7199639 DOI: 10.1155/2020/6090262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/23/2022] Open
Abstract
Objective The aim of this study was to explore cerebral blood flow (CBF) alterations in subjects with high myopia (HM) using three-dimensional pseudocontinuous arterial spin labeling (3D-pcASL). Methods A total of sixteen patients with bilateral HM and sixteen age- and sex-matched healthy controls (HCs) were recruited. All subjects were right-handed. Image data preprocessing was performed using SPM8 and the DPABI toolbox. Clinical parameters were acquired in the HM group. Two-sample t-tests and Pearson correlation analysis were applied in this study. Results Compared to HCs, patients with HM exhibited significantly increased CBF in the bilateral cerebellum, and no decreases in CBF were detected in the brain. However, no relationship was found between the mean CBF values in the different brain areas and the disease duration (P > 0.05). Conclusions Using ASL analysis, we detected aberrant blood perfusion in the cerebellum in HM patients, contributing to a better understanding of brain abnormalities and brain plasticity through a different perspective.
Collapse
|
15
|
|
16
|
Jiang F, Yu C, Zuo MJ, Zhang C, Wang Y, Zhou FQ, Zeng XJ. Frequency-dependent neural activity in primary angle-closure glaucoma. Neuropsychiatr Dis Treat 2019; 15:271-282. [PMID: 30697052 PMCID: PMC6342137 DOI: 10.2147/ndt.s187367] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE In this study, we aimed to investigate the frequency-dependent spontaneous neural activity in primary angle-closure glaucoma (PACG) using the amplitude of low-frequency fluctuations (ALFF) method. PATIENTS AND METHODS In total, 52 PACG individuals (24 males and 28 females) and 52 normal-sighted controls (NS; 24 males and 28 females) who were closely matched in age, sex, and education underwent resting-state magnetic resonance imaging scans. A repeated-measures ANOVA and post hoc two-sample t-tests were conducted to analyze the different ALFF values in two different frequency bands (slow-4, 0.027-0.073 Hz and slow-5, 0.010-0.027 Hz) between the two groups. Pearson's correlation analysis was conducted to reveal the relationship between the mean ALFF values and clinical variables in the PACG group. RESULTS Compared to the NS group, the PACG group had high ALFF values in the right inferior occipital gyrus and low ALFF values in the left middle occipital gyrus, left precentral gyrus, and left postcentral gyrus in the slow-4 band. The PACG group had high ALFF values in the right inferior occipital gyrus and low ALFF values in the left inferior parietal lobule, left postcentral gyrus, and right precentral/postcentral gyrus in the slow-5 band. Specifically, we found that the abnormal ALFF values in the bilateral posterior cingulate gyrus and bilateral precuneus were higher in the slow-4 than in the slow-5 band, whereas ALFF in the bilateral frontal lobe, right fusiform, and right cerebellum posterior lobe were higher in the slow-5 than in the slow-4 band. The greater mean ALFF values of the right inferior occipital gyrus were associated with smaller retinal nerve fiber layer thickness and greater visual fields in PACG group in the slow-4 band. CONCLUSION Our results highlighted that individuals in the PACG group showed abnormal spontaneous neural activities in the visual cortices, sensorimotor cortices, frontal lobe, frontoparietal network, and default mode network at two frequency bands, which might indicate impaired vision and cognition and emotion function in PACG individuals. These findings offer important insight into the understanding of the neural mechanism of PACG.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Chen Yu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi 330006, People's Republic of China, ;
| | - Min-Jing Zuo
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Chun Zhang
- Department of Radiology, Huai An Maternal and Child Health Hospital, Huai An, Jiangsu 223302, People's Republic of China
| | - Ying Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi 330006, People's Republic of China, ;
| | - Xian-Jun Zeng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi 330006, People's Republic of China, ;
| |
Collapse
|