1
|
Rahimpour S, Clary BL, Nasoohi S, Berhanu YS, Brown CM. Immunometabolism In Brain Aging and Neurodegeneration: Bridging Metabolic Pathways and Immune Responses. Aging Dis 2024:AD.2024.1293. [PMID: 39751865 DOI: 10.14336/ad.2024.1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
The complex set of interactions between the immune system and metabolism, known as immunometabolism, has emerged as a critical regulator of disease outcomes in the central nervous system. Numerous studies have linked metabolic disturbances to impaired immune responses in brain aging, neurodegenerative disorders, and brain injury. In this review, we will discuss how disruptions in brain immunometabolism balance contribute to the pathophysiology of brain dysfunction. The first part of the review summarizes the contributions of critical immune cell populations such as microglia, astrocytes, and infiltrating immune cells in mediating inflammation and metabolism in CNS disorders. The remainder of the review addresses the impact of metabolic changes on immune cell activation and disease progression in brain aging, Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, spinal cord injury, and traumatic brain injury. Furthermore, we also address the therapeutic potential of targeting immunometabolic pathways to reduce neuroinflammation and slow disease progression. By focusing on the interactions among brain immune cells and the metabolic mechanisms they recruit in disease, we present a comprehensive overview of brain immunometabolism in human health and disease.
Collapse
Affiliation(s)
- Shokofeh Rahimpour
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Briana L Clary
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Sanaz Nasoohi
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Yohanna S Berhanu
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Candice M Brown
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
2
|
Reyes JF, Devarajan M, Cai D, Mashek DG. Senescent glia-bridging neuronal mitochondrial dysfunction and lipid accumulation in aging. LIFE METABOLISM 2024; 3:loae031. [PMID: 39119586 PMCID: PMC11303841 DOI: 10.1093/lifemeta/loae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Affiliation(s)
- Joel F Reyes
- N. Bud Grossman Center for Memory Research and Care, Department of Neurology, The University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN 55455, USA
| | - Mahima Devarajan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN 55455, USA
| | - Dongming Cai
- N. Bud Grossman Center for Memory Research and Care, Department of Neurology, The University of Minnesota, Minneapolis, MN 55455, USA
- Geriatric Research Education & Clinical Center, The Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, MN 55455, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Minnesota, MN 55455, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, MN 55455, USA
| |
Collapse
|
3
|
Huynh TN, Fikse EN, Havrda MC, Chang CCY, Chang TY. Inhibiting the cholesterol storage enzyme ACAT1/SOAT1 in aging Apolipoprotein E4 mice alter their brains inflammatory profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620063. [PMID: 39484620 PMCID: PMC11527143 DOI: 10.1101/2024.10.24.620063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Aging and Apolipoprotein E4 (APOE4) are the two most significant risk factors for late-onset Alzheimer's disease (LOAD). Compared to APOE3, APOE4 disrupts cholesterol homeostasis, increases cholesteryl esters (CEs), and exacerbates neuroinflammation in brain cells including microglia. Targeting CEs and neuroinflammation could be a novel strategy to ameliorate APOE4 dependent phenotypes. Toll-like receptor 4 (TLR4) is a key player in inflammation, its regulation is associated with cholesterol content of lipid rafts in cell membranes. We previously demonstrated that in normal microglia expressing APOE3, inhibiting the cholesterol storage enzyme acylCoA:cholesterol acyltransferase 1 (ACAT1/SOAT1) reduces CEs, dampened neuroinflammation via modulating the fate of TLR4. We also showed that treating myelin debris-loaded normal microglia with ACAT inhibitor F12511 reduced cellular CEs and activated ABC transporter 1 (ABCA1) for cholesterol efflux. In this study, we found that treating primary microglia expressing APOE4 with F12511 also reduces CEs, activated ABCA1, and dampened LPS dependent NFkB activation. In vivo, a two-week injections of nanoparticle F12511, which consists of DSPE-PEG 2000 , phosphatidylcholine, and F12511, to aged female APOE4 mice reduced TLR4 protein content and decreased proinflammatory cytokines including IL-1β in APOE4 mice brains. Overall, our work suggests nanoparticle F12511 is a novel agent to ameliorate LOAD.
Collapse
|
4
|
Bu L, He L, Wang X, Du G, Wu R, Liu W. Proteomic Analysis Provides a New Sight Into the CRABP1 Expression in the Pathogenesis of Hirschsprung Disease. Biochem Genet 2024:10.1007/s10528-024-10913-3. [PMID: 39298027 DOI: 10.1007/s10528-024-10913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Hirschsprung's disease (HSCR) is the most common developmental disorder of the enteric nervous system and its etiology and pathogenesis remain largely unknown. This study aims to identify the differential proteomic patterns linked to the occurrence and development of Hirschsprung disease in colonic tissues. Biopsies were obtained from the aganglionic colon in human HSCR and the corresponding ganglionic colon segments for direct quantitative determination of the data-independent acquisition (DIA) followed by bioinformatics analysis. The differentially expressed main proteins were confirmed by Western blot and immunostaining. A total of 5832 proteins were identified in human colon tissues. Among them, 97 differentially expressed proteins (DEP) with fold change (FC) > 1.2 were screened, including 18 upregulated proteins and 79 downregulated proteins, and GO and KEGG enrichment analyses were performed on differential proteins. By comparing down-regulated proteins with highly connected protein nodes in the PPI network with those related to intracellular metabolic processes in the above analysis, we identified cellular retinoic acid binding protein 1(CRABP1). Its expression was verified in the aganglionic part of the colon by western blotting in an expanded sample set (P = 0.0031). The immunostaining results revealed that CRABP1 was highly expressed in the myenteric plexus ganglion in ganglionic colons compared to aganglionic segments (P = 0.0004). This study demonstrated the down-regulation of CRABP1 in the aganglionic hindgut of HSCR, which could provide potential markers or promising new candidate actors for the pathogenesis of HSCR.
Collapse
Affiliation(s)
- Lingyun Bu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China
| | - Lingxiao He
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China
| | - Xiaoqing Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China
| | - Guoqiang Du
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China
| | - Rongde Wu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, China.
| |
Collapse
|
5
|
Zhang J, Wang W, Hou X, Wu J, Wang Y, Fan J, Zhang Z, Yuan Z, Sun C, Lu B, Zheng J. Metabolic-associated steatotic liver disease and risk of Alzheimer's disease: a real-world retrospective cohort study. Front Endocrinol (Lausanne) 2024; 15:1451908. [PMID: 39296714 PMCID: PMC11408170 DOI: 10.3389/fendo.2024.1451908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/22/2024] [Indexed: 09/21/2024] Open
Abstract
Objective Alzheimer's Disease (AD) is increasingly recognized as being associated with metabolic disorders, including Metabolic Associated Steatotic Liver Disease (MASLD). This study aimed to assess the relative risk of AD in individuals with MASLD. Methods In this retrospective cohort study, we analyzed data from individuals aged over 65 who underwent health check-ups between January 2018 and June 2023. MASLD was diagnosed based on ultrasound findings and cardiometabolic criteria. AD incidence was identified using ICD-10 codes and self-reports. Poisson regression models estimated the relative risk of AD in relation to MASLD, adjusting for age, BMI, sex, SBP, HbA1c, HDL-c, triglycerides, hs-CRP, GGT, and estimated GFR. Results The study included 4,582 MASLD patients and 6,318 controls. MASLD patients showed a higher incidence of AD (127 cases) compared to controls (61 cases). The fully adjusted Poisson regression model indicated an increased AD risk in MASLD patients [RR: 2.80 (95% CI: 1.79-4.38)]. Conclusion Our findings suggested MASLD as an independent risk factor for AD, underlining the role of metabolic dysfunctions in AD pathogenesis. The study emphasized the need for comprehensive metabolic health management in AD prevention strategies, particularly among high-risk groups.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Health Management Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wenzhao Wang
- Health Management Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xingyun Hou
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jia Wu
- Health Management Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yifan Wang
- Health Management Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jianling Fan
- Health Management Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhiyu Zhang
- Health Management Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhizhong Yuan
- Health Management Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Cuifen Sun
- Health Management Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Bin Lu
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jiaoyang Zheng
- Health Management Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Sepulveda J, Kim JY, Binder J, Vicini S, Rebeck GW. APOE4 genotype and aging impair injury-induced microglial behavior in brain slices, including toward Aβ, through P2RY12. Mol Neurodegener 2024; 19:24. [PMID: 38468308 DOI: 10.1186/s13024-024-00714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Microglia are highly dynamic cells that play a critical role in tissue homeostasis through the surveillance of brain parenchyma and response to cues associated with damage. Aging and APOE4 genotype are the strongest risk factors for Alzheimer's disease (AD), but how they affect microglial dynamics remains unclear. Using ex vivo confocal microscopy, we analyzed microglial dynamic behaviors in the entorhinal cortex (EC) and hippocampus CA1 of 6-, 12-, and 21-month-old mice APOE3 or APOE4 knock-in mice expressing GFP under the CX3CR1 promoter. To study microglia surveillance, we imaged microglia baseline motility for 20 min and measured the extension and retraction of processes. We found that APOE4 microglia exhibited significantly less brain surveillance (27%) compared to APOE3 microglia in 6-month-old mice; aging exacerbated this deficit. To measure microglia response to damage, we imaged process motility in response to ATP, an injury-associated signal, for 30 min. We found APOE4 microglia extended their processes significantly slower (0.9 µm/min, p < 0.005) than APOE3 microglia (1.1 μm/min) in 6-month-old animals. APOE-associated alterations in microglia motility were observed in 12- and 21-month-old animals, and this effect was exacerbated with aging in APOE4 microglia. We measured protein and mRNA levels of P2RY12, a core microglial receptor required for process movement in response to damage. We found that APOE4 microglia express significantly less P2RY12 receptors compared to APOE3 microglia despite no changes in P2RY12 transcripts. To examine if the effect of APOE4 on the microglial response to ATP also applied to amyloid β (Aβ), we infused locally Hi-Lyte Fluor 555-labeled Aβ in acute brain slices of 6-month-old mice and imaged microglia movement for 2 h. APOE4 microglia showed a significantly slower (p < 0.0001) process movement toward the Aβ, and less Aβ coverage at early time points after Aβ injection. To test whether P2RY12 is involved in process movement in response to Aβ, we treated acute brain slices with a P2RY12 antagonist before Aβ injection; microglial processes no longer migrated towards Aβ. These results provide mechanistic insights into the impact of APOE4 genotype and aging in dynamic microglial behaviors prior to gross Aβ pathology and could help explain how APOE4 brains are more susceptible to AD pathogenesis.
Collapse
Affiliation(s)
- Jordy Sepulveda
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20007, USA
| | - Jennifer Yejean Kim
- Department of Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Joseph Binder
- Department of Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Stefano Vicini
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, 20007, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, DC, 20007, USA.
| |
Collapse
|
8
|
Volk Robertson K, Schleh MW, Harrison FE, Hasty AH. Microglial-specific knockdown of iron import gene, Slc11a2, blunts LPS-induced neuroinflammatory responses in a sex-specific manner. Brain Behav Immun 2024; 116:370-384. [PMID: 38141840 PMCID: PMC10874246 DOI: 10.1016/j.bbi.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023] Open
Abstract
Neuroinflammation and microglial iron load are significant hallmarks found in several neurodegenerative diseases. In in vitro systems, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and it has been shown that iron can augment cellular inflammation, suggesting a feed-forward loop between mechanisms involved in iron import and inflammatory signaling. However, it is not understood how microglial iron import mechanisms contribute to inflammation in vivo, or whether altering a microglial iron-related gene affects the inflammatory response. These studies aimed to determine the effect of knocking down microglial iron import gene Slc11a2 on the inflammatory response in vivo. We generated a novel model of tamoxifen-inducible, microglial-specific Slc11a2 knockdown using Cx3cr1Cre-ERT2 mice. Transgenic male and female mice were administered intraperitoneal saline or lipopolysaccharide (LPS) and assessed for sickness behavior post-injection. Plasma cytokines and microglial bulk RNA sequencing (RNASeq) analyses were performed at 4 h post-LPS, and microglia were collected for gene expression analysis after 24 h. A subset of mice was assessed in a behavioral test battery following LPS-induced sickness recovery. Control male, but not female, mice significantly upregulated microglial Slc11a2 at 4 and 24 h following LPS. In Slc11a2 knockdown mice, we observed an improvement in the acute behavioral sickness response post-LPS in male, but not female, animals. Microglia from male, but not female, knockdown animals exhibited a significant decrease in LPS-provoked pro-inflammatory cytokine expression after 24 h. RNASeq data from male knockdown microglia 4 h post-LPS revealed a robust downregulation in inflammatory genes including Il6, Tnfα, and Il1β, and an increase in anti-inflammatory and homeostatic markers (e.g., Tgfbr1, Cx3cr1, and Trem2). This corresponded with a profound decrease in plasma pro-inflammatory cytokines 4 h post-LPS. At 4 h, male knockdown microglia also upregulated expression of markers of iron export, iron recycling, and iron homeostasis and decreased iron storage and import genes, along with pro-oxidant markers such as Cybb, Nos2, and Hif1α. Overall, this work elucidates how manipulating a specific gene involved in iron import in microglia alters acute inflammatory signaling and overall cell activation state in male mice. These data highlight a sex-specific link between a microglial iron import gene and the pro-inflammatory response to LPS in vivo, providing further insight into the mechanisms driving neuroinflammatory disease.
Collapse
Affiliation(s)
- Katrina Volk Robertson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Michael W Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|