1
|
Kidd TJ, Canton R, Ekkelenkamp M, Johansen HK, Gilligan P, LiPuma JJ, Bell SC, Elborn JS, Flume PA, VanDevanter DR, Waters VJ. Defining antimicrobial resistance in cystic fibrosis. J Cyst Fibros 2018; 17:696-704. [PMID: 30266518 DOI: 10.1016/j.jcf.2018.08.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/21/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022]
Abstract
Antimicrobial resistance (AMR) can present significant challenges in the treatment of cystic fibrosis (CF) lung infections. In CF and other chronic diseases, AMR has a different profile and clinical consequences compared to acute infections and this requires different diagnostic and treatment approaches. This review defines AMR, explains how it occurs, describes the methods used to measure AMR as well as their limitations, and concludes with future directions for research and development in the area of AMR in CF.
Collapse
Affiliation(s)
- Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Miquel Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Peter Gilligan
- Clinical Microbiology-Immunology Laboratories, UNC HealthCare, Chapel Hill, NC, USA.
| | - John J LiPuma
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital and QIMR Berghofer Medical Researhc Institute, Brisbane, Australia.
| | - J Stuart Elborn
- Imperial College and Royal Brompton Hospital, London, Queen's University Belfast, United Kingdom.
| | - Patrick A Flume
- Departments of Medicine and Pediatrics, Medical University of South Carolina, Charleston, SC, USA.
| | - Donald R VanDevanter
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Valerie J Waters
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, USA.
| | | |
Collapse
|
2
|
Beaudoin T, Kennedy S, Yau Y, Waters V. Visualizing the Effects of Sputum on Biofilm Development Using a Chambered Coverglass Model. J Vis Exp 2016. [PMID: 28060284 DOI: 10.3791/54819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Biofilms consist of groups of bacteria encased in a self-secreted matrix. They play an important role in industrial contamination as well as in the development and persistence of many health related infections. One of the most well described and studied biofilms in human disease occurs in chronic pulmonary infection of cystic fibrosis patients. When studying biofilms in the context of the host, many factors can impact biofilm formation and development. In order to identify how host factors may affect biofilm formation and development, we used a static chambered coverglass method to grow biofilms in the presence of host-derived factors in the form of sputum supernatants. Bacteria are seeded into chambers and exposed to sputum filtrates. Following 48 hr of growth, biofilms are stained with a commercial biofilm viability kit prior to confocal microscopy and analysis. Following image acquisition, biofilm properties can be assessed using different software platforms. This method allows us to visualize key properties of biofilm growth in presence of different substances including antibiotics.
Collapse
Affiliation(s)
- Trevor Beaudoin
- Physiology and Experimental Medicine, Hospital for Sick Children;
| | - Sarah Kennedy
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland
| | - Yvonne Yau
- Department of Laboratory Medicine and Pathobiology, University of Toronto
| | | |
Collapse
|