1
|
Kovacs D, Mambule I, Read JM, Kiran A, Chilombe M, Bvumbwe T, Aston S, Menyere M, Masina M, Kamzati M, Ganiza TN, Iuliano D, McMorrow M, Bar-Zeev N, Everett D, French N, Ho A. Epidemiology of Human Seasonal Coronaviruses Among People With Mild and Severe Acute Respiratory Illness in Blantyre, Malawi, 2011-2017. J Infect Dis 2024; 230:e363-e373. [PMID: 38365443 PMCID: PMC11322416 DOI: 10.1093/infdis/jiad587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/18/2023] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The aim of this study was to characterize the epidemiology of human seasonal coronaviruses (HCoVs) in southern Malawi. METHODS We tested for HCoVs 229E, OC43, NL63, and HKU1 using real-time polymerase chain reaction (PCR) on upper respiratory specimens from asymptomatic controls and individuals of all ages recruited through severe acute respiratory illness (SARI) surveillance at Queen Elizabeth Central Hospital, Blantyre, and a prospective influenza-like illness (ILI) observational study between 2011 and 2017. We modeled the probability of having a positive PCR for each HCoV using negative binomial models, and calculated pathogen-attributable fractions (PAFs). RESULTS Overall, 8.8% (539/6107) of specimens were positive for ≥1 HCoV. OC43 was the most frequently detected HCoV (3.1% [191/6107]). NL63 was more frequently detected in ILI patients (adjusted incidence rate ratio [aIRR], 9.60 [95% confidence interval {CI}, 3.25-28.30]), while 229E (aIRR, 8.99 [95% CI, 1.81-44.70]) was more frequent in SARI patients than asymptomatic controls. In adults, 229E and OC43 were associated with SARI (PAF, 86.5% and 89.4%, respectively), while NL63 was associated with ILI (PAF, 85.1%). The prevalence of HCoVs was similar between children with SARI and controls. All HCoVs had bimodal peaks but distinct seasonality. CONCLUSIONS OC43 was the most prevalent HCoV in acute respiratory illness of all ages. Individual HCoVs had distinct seasonality that differed from temperate settings.
Collapse
Affiliation(s)
- Dory Kovacs
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Ivan Mambule
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Research Department, Joint Clinical Research Centre, Kampala, Uganda
| | - Jonathan M. Read
- Centre for Health Information Computation and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Anmol Kiran
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Moses Chilombe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Malaria Alert Centre, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Thandiwe Bvumbwe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Blantyre Malaria Project, Blantyre, Malawi
| | - Stephen Aston
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Mavis Menyere
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Mazuba Masina
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Moses Kamzati
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Thokozani Namale Ganiza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Danielle Iuliano
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Meredith McMorrow
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Naor Bar-Zeev
- International Vaccine Access Center, Department of international Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Dean Everett
- Department of Pathology and Infectious Diseases, College of Medicine and Health Sciences, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Neil French
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Antonia Ho
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Medical Research Council-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Butler M, Breazeale G, Mwangi E, Dowell E, Dominguez SR, Lamberth L, Hultén KG, Jung SA. Development and validation of a multiplex real-time PCR assay for detection and quantification of Streptococcus pneumoniae in pediatric respiratory samples. Microbiol Spectr 2023; 11:e0211823. [PMID: 37937989 PMCID: PMC10715132 DOI: 10.1128/spectrum.02118-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 11/09/2023] Open
Abstract
IMPORTANCE Streptococcus pneumoniae (Spn) is the world's leading cause of lower respiratory tract infection morbidity and mortality in children. However, current clinical microbiological methods have disadvantages. Spn can be difficult to grow in laboratory conditions if a patient is pre-treated, and Spn antigen testing has unclear clinical utility in children. Syndromic panel testing is less cost-effective than targeted PCR if clinical suspicion is high for a single pathogen. Also, such testing entails a full, expensive validation for each panel target if used for multiple respiratory sources. Therefore, better diagnostic modalities are needed. Our study validates a multiplex PCR assay with three genomic targets for semi-quantitative and quantitative Spn molecular detection from lower respiratory sources for clinical testing and from upper respiratory sources for research investigation.
Collapse
Affiliation(s)
- Molly Butler
- Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Garrett Breazeale
- Children’s Hospital Colorado, Aurora, Colorado, USA
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eric Mwangi
- Children’s Hospital Colorado, Aurora, Colorado, USA
| | | | - Samuel R. Dominguez
- Children’s Hospital Colorado, Aurora, Colorado, USA
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Kristina G. Hultén
- Texas Children’s Hospital, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
3
|
Parker AM, Jackson N, Awasthi S, Kim H, Alwan T, Wyllie AL, Baldwin AB, Brennick NB, Moehle EA, Giannikopoulos P, Kogut K, Holland N, Mora-Wyrobek A, Eskenazi B, Riley LW, Lewnard JA. Association of upper respiratory Streptococcus pneumoniae colonization with SARS-CoV-2 infection among adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.10.04.22280709. [PMID: 36238718 PMCID: PMC9558443 DOI: 10.1101/2022.10.04.22280709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Background Streptococcus pneumoniae interacts with numerous viral respiratory pathogens in the upper airway. It is unclear whether similar interactions occur with SARS-CoV-2. Methods We collected saliva specimens from working-age adults receiving SARS-CoV-2 molecular testing at outpatient clinics and via mobile community-outreach testing between July and November 2020 in Monterey County, California. Following bacterial culture enrichment, we tested for pneumococci by quantitative polymerase chain reaction (qPCR) targeting the lytA and piaB genes, and measured associations with SARS-CoV-2 infection via conditional logistic regression. Results Analyses included 1,278 participants, with 564 enrolled in clinics and 714 enrolled through outreach-based testing. Prevalence of pneumococcal carriage was 9.2% (117/1,278) among all participants (11.2% [63/564] clinic-based testing; 7.6% [54/714] outreach testing). Prevalence of SARS-CoV-2 infection was 27.4% (32/117) among pneumococcal carriers and 9.6% (112/1,161) among non-carriers (adjusted odds ratio [aOR]: 2.73; 95% confidence interval: 1.58-4.69). Associations between SARS-CoV-2 infection and pneumococcal carriage were enhanced in the clinic-based sample (aOR=4.01 [2.08-7.75]) and among symptomatic participants (aOR=3.38 [1.35-8.40]), when compared to findings within the outreach-based sample and among asymptomatic participants. Adjusted odds of SARS-CoV-2 co-infection increased 1.24 (1.00-1.55)-fold for each 1-unit decrease in piaB qPCR C T value among pneumococcal carriers. Last, pneumococcal carriage modified the association of SARS-CoV-2 infection with recent exposure to a suspected COVID-19 case (aOR=7.64 [1.91-30.7] and 3.29 [1.94-5.59]) among pneumococcal carriers and non-carriers, respectively). Conclusions Associations of pneumococcal carriage detection and density with SARS-CoV-2 suggest a synergistic relationship in the upper airway. Longitudinal studies are needed to determine interaction mechanisms between pneumococci and SARS-CoV-2. Key points In an adult ambulatory and community sample, SARS-CoV-2 infection was more prevalent among pneumococcal carriers than non-carriers.Associations between pneumococcal carriage and SARS-CoV-2 infection were strongest among adults reporting acute symptoms and receiving SARS-CoV-2 testing in a clinical setting.
Collapse
|