1
|
Zuercher H, Daneshmand A, Stolow E, Giansiracusa M, Allan R, Sapounas A. Coexistence of Intestinal Spirochetosis and Colorectal Cancer: Could the Coil be Carcinogenic? ACG Case Rep J 2024; 11:e01557. [PMID: 39559787 PMCID: PMC11573331 DOI: 10.14309/crj.0000000000001557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Intestinal spirochetosis (IS) is an infectious gastrointestinal disease caused by Brachyspira bacteria. We detail an exceedingly rare case of IS with concomitant invasive colorectal adenocarcinoma (CRC) in a 58-year-old man presenting with abdominal discomfort and fever. Colonoscopic evaluation revealed abnormal-appearing, nodular cecal mucosa and a 35 mm rectosigmoid mass. Histopathology confirmed IS infection and CRC. Our case report is the first to detail IS diagnosed concurrently with colorectal cancer. It highlights the necessity of a high index of suspicion for IS in patients presenting with abdominal discomfort and endoscopic evidence of irregular nodular mucosa, particularly in the setting of suspected CRC. It further details potential pathophysiologic links between IS and colorectal malignancy.
Collapse
Affiliation(s)
- Hannah Zuercher
- Divison of Internal Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Arvin Daneshmand
- Divison of Internal Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Eugene Stolow
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida College of Medicine, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - Matthew Giansiracusa
- Divison of Internal Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Robert Allan
- Pathology and Laboratory Medicine Service, Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - Antonios Sapounas
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida College of Medicine, North Florida/South Georgia Veterans Health System, Gainesville, FL
| |
Collapse
|
2
|
Lin X, Zhang W, He L, Xie H, Feng B, Zhu H, Zhao J, Cui L, Li B, Li YF. Understanding the hepatoxicity of inorganic mercury through guts: Perturbance to gut microbiota, alteration of gut-liver axis related metabolites and damage to gut integrity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112791. [PMID: 34555721 DOI: 10.1016/j.ecoenv.2021.112791] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) brings adverse effects to the environment and human beings and inorganic mercury (IHg) is a typical hepatic toxin. This work studied the impacts of IHg on gut microbes and metabolome together with its damage to liver and gut in rats through gut microbiome, metabolomics and metallomics. Sprague Dawley (SD) rats were orally exposed to 0.4 μg/mL IHg and sacrificed after 24 h. It was found that IHg perturbed greatly on the gut microbiota, such as increased pathogenic bacteria like G. bacillus. In addition, IHg also changed gut-liver axis related metabolites, which was confirmed by the secretion of a large number of inflammatory factors in both the gut and the liver. The changed gut-liver axis related metabolites correlated well to the changes of gut microbiome. In all, besides the direct deposition in liver of Hg, the perturbance to gut microbiome and alteration of gut-liver axis related metabolites by IHg also contributed to its hepatoxicity, which provides new insights about the hepatoxicity of chemicals. The strategy applied in this work may also be used to understand the hepatoxicity of other chemicals.
Collapse
Affiliation(s)
- Xiaoying Lin
- Jilin Medical University, Jilin 132013, Jilin, China; CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
| | - Lina He
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxin Xie
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Feng
- Jilin Medical University, Jilin 132013, Jilin, China
| | - Heyun Zhu
- Jilin Medical University, Jilin 132013, Jilin, China
| | - Jiating Zhao
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liwei Cui
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bai Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|