1
|
Jergova S, Dugan EA, Sagen J. Attenuation of SCI-Induced Hypersensitivity by Intensive Locomotor Training and Recombinant GABAergic Cells. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010084. [PMID: 36671656 PMCID: PMC9854592 DOI: 10.3390/bioengineering10010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
The underlying mechanisms of spinal cord injury (SCI)-induced chronic pain involve dysfunctional GABAergic signaling and enhanced NMDA signaling. Our previous studies showed that SCI hypersensitivity in rats can be attenuated by recombinant rat GABAergic cells releasing NMDA blocker serine-histogranin (SHG) and by intensive locomotor training (ILT). The current study combines these approaches and evaluates their analgesic effects on a model of SCI pain in rats. Cells were grafted into the spinal cord at 4 weeks post-SCI to target the chronic pain, and ILT was initiated 5 weeks post-SCI. The hypersensitivity was evaluated weekly, which was followed by histological and biochemical assays. Prolonged effects of the treatment were evaluated in subgroups of animals after we discontinued ILT. The results show attenuation of tactile, heat and cold hypersensitivity in all of the treated animals and reduced levels of proinflammatory cytokines IL1β and TNFα in the spinal tissue and CSF. Animals with recombinant grafts and ILT showed the preservation of analgesic effects even during sedentary periods when the ILT was discontinued. Retraining helped to re-establish the effect of long-term training in all of the groups, with the greatest impact being in animals with recombinant grafts. These findings suggest that intermittent training in combination with cell therapy might be an efficient approach to manage chronic pain in SCI patients.
Collapse
|
2
|
Jergova S, Hernandez M, Sagen J. Analgesic effect of recombinant GABAergic precursors releasing MVIIA in a model of peripheral nerve injury in rats. Mol Pain 2022; 18:17448069221129829. [PMID: 36113096 PMCID: PMC9513588 DOI: 10.1177/17448069221129829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Development of chronic pain has been attributed to dysfunctional GABA signaling in the
spinal cord. Direct pharmacological interventions on GABA signaling are usually not very
efficient and often accompanied by side effects due to the widespread distribution of GABA
receptors in CNS. Transplantation of GABAergic neuronal cells may restore the inhibitory
potential in the spinal cord. Grafted cells may also release additional analgesic peptides
by means of genetic engineering to further enhance the benefits of this approach.
Conopeptides are ideal candidates for recombinant expression using cell-based strategies.
The omega-conopeptide MVIIA is in clinical use for severe pain marketed as FDA approved
Prialt in the form of intrathecal injections. The goal of this study was to develop
transplantable recombinant GABAergic cells releasing conopeptide MVIIA and to evaluate the
analgesic effect of the grafts in a model of peripheral nerve injury-induced pain. We have
engineered and characterized the GABAergic progenitors expressing MVIIA. Recombinant and
nonrecombinant cells were intraspinally injected into animals after the nerve injury.
Animals were tested weekly up to 12 weeks for the presence of hypersensitivity, followed
by histochemical and biochemical analysis of the tissue. We observed beneficial effects of
the grafted cells in reducing hypersensitivity in all grafted animals, especially potent
in the recombinant group. The level of pain-related cytokines was reduced in the grafted
animals and correlation between these pain markers and actual behavior was indicated. This
study demonstrated the feasibility of recombinant cell transplantation in the management
of chronic pain.
Collapse
|
3
|
Zhang ZR, Wu Y, Wang WJ, Wang FY. The Effect of GABAergic Cells Transplantation on Allodynia and Hyperalgesia in Neuropathic Animals: A Systematic Review With Meta-Analysis. Front Neurol 2022; 13:900436. [PMID: 35860495 PMCID: PMC9289294 DOI: 10.3389/fneur.2022.900436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/13/2022] [Indexed: 12/09/2022] Open
Abstract
The role of GABAergic cell transplantation in improving neuropathic pain is controversial. We comprehensively searched the relevant literature to identify animal studies of GABAergic cell transplantation that recorded pain behaviors as an outcome according to the Cochrane Handbook 5.0.2. Controlled studies assessing the administration of GABAergic neurons or GABAergic neuronal progenitor cells to rat or mouse neuropathic pain animal models were included. Basic design information and mechanical allodynia thresholds and heat hyperalgesia thresholds data were collected. The risk of bias for the animal experiments was assessed according to the SYRCLE's tool. This study included 10 full-text articles. GABAergic cells transplantation leads to a statistically significant improvement of allodynia (SMD = 5.26; 95% confidence interval: 3.02-7.51; P < 0.001) and hyperalgesia (SMD: 4.10; 95% confidence interval: 1.84-6.35; P < 0.001). Differentiated GABAergic cells and without antibiotics using may have a better effect for improving neuropathic pain. GABAergic cell transplantation is a promising treatment for improving neuropathic pain. This systematic review and meta-analysis evaluated the effects of GABAergic cell transplantation on neuropathic pain, which can guide future clinical trials and possible clinical treatments, and better attenuate neuropathic pain caused by abnormal circuit hyperexcitability.
Collapse
Affiliation(s)
- Zhen-Rong Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spine Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Yao Wu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spine Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Wen-Jing Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Occupational Therapy, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| | - Fang-Yong Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spine Surgery, China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, China
| |
Collapse
|
4
|
Askarian-Amiri S, Maleki SN, Alavi SNR, Neishaboori AM, Toloui A, Gubari MIM, Sarveazad A, Hosseini M, Yousefifard M. The efficacy of GABAergic precursor cells transplantation in alleviating neuropathic pain in animal models: a systematic review and meta-analysis. Korean J Pain 2022; 35:43-58. [PMID: 34966011 PMCID: PMC8728544 DOI: 10.3344/kjp.2022.35.1.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Background Current therapies are quite unsuccessful in the management of neuropathic pain. Therefore, considering the inhibitory characteristics of GABA mediators, the present systematic review and meta-analysis aimed to determine the efficacy of GABAergic neural precursor cells on neuropathic pain management. Methods Search was conducted on Medline, Embase, Scopus, and Web of Science databases. A search strategy was designed based on the keywords related to GABAergic cells combined with neuropathic pain. The outcomes were allodynia and hyperalgesia. The results were reported as a pooled standardized mean difference (SMD) with a 95% confidence interval (95% CI). Results Data of 13 studies were analyzed in the present meta-analysis. The results showed that administration of GABAergic cells improved allodynia (SMD = 1.79; 95% CI 0.87, 271; P < 0.001) and hyperalgesia (SMD = 1.29; 95% CI 0.26, 2.32; P = 0.019). Moreover, the analyses demonstrated that the efficacy of GABAergic cells in the management of allodynia and hyperalgesia is only observed in rats. Also, only genetically modified cells are effective in improving both of allodynia, and hyperalgesia. Conclusions A moderate level of pre-clinical evidence showed that transplantation of genetically-modified GABAergic cells is effective in the management of neuropathic pain. However, it seems that the transplantation efficacy of these cells is only statistically significant in improving pain symptoms in rats. Hence, caution should be exercised regarding the generalizability and the translation of the findings from rats and mice studies to large animal studies and clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Amirmohammad Toloui
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammed I M Gubari
- Department of Family and Community Medicine, College of Medicine, University of Sulaimani, Sulaimani, Iraq
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.,Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Pediatric Chronic Kidney Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Driving effect of BDNF in the spinal dorsal horn on neuropathic pain. Neurosci Lett 2021; 756:135965. [PMID: 34022262 DOI: 10.1016/j.neulet.2021.135965] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Neuropathic pain (NP) is caused by direct or indirect damage to the nervous system and is a common symptom of many diseases. The mechanisms underlying the onset and persistence of NP are unclear. Therefore, research concerning these mechanisms has become an important focus in the medical field. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. BDNF is an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity, which are essential for nerve maintenance and repair. However, BDNF is upregulated in the spinal dorsal horn and can promote NP by activating glial cells, reducing inhibitory functions and enhancing excitement after nociceptive stimulation. This review considers the relationship between NP and BDNF signaling in the spinal dorsal horn and discusses potentially related pathological mechanisms.
Collapse
|
6
|
Asgharzade S, Talaei A, Farkhondeh T, Forouzanfar F. A Review on Stem Cell Therapy for Neuropathic Pain. Curr Stem Cell Res Ther 2021; 15:349-361. [PMID: 32056531 DOI: 10.2174/1574888x15666200214112908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Neuropathic pain is a complex, chronic pain state that is heterogeneous in nature and caused by the consequence of a lesion or disease affecting the somatosensory system. Current medications give a long-lasting pain relief only in a limited percentage of patients also associated with numerous side effects. Stem cell transplantation is one of the attractive therapeutic platforms for the treatment of a variety of diseases, such as neuropathic pain. Here, the authors review the therapeutic effects of stem cell transplantation of different origin and species in different models of neuropathic pain disorders. Stem cell transplantation could alleviate the neuropathic pain; indeed, stem cells are the source of cells, which differentiate into a variety of cell types and lead trophic factors to migrate to the lesion site opposing the effects of damage. In conclusion, this review suggests that stem cell therapy can be a novel approach for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Andisheh Talaei
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Mutually beneficial effects of intensive exercise and GABAergic neural progenitor cell transplants in reducing neuropathic pain and spinal pathology in rats with spinal cord injury. Exp Neurol 2020; 327:113208. [PMID: 31962127 DOI: 10.1016/j.expneurol.2020.113208] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 01/13/2023]
Abstract
Spinal cord injury (SCI) produces both locomotor deficits and sensory dysfunction that greatly reduce the overall quality of life. Mechanisms underlying chronic pain include increased neuro-inflammation and changes in spinal processing of sensory signals, with reduced inhibitory GABAergic signaling a likely key player. Our previous research demonstrated that spinal transplantation of GABAergic neural progenitor cells (NPCs) reduced neuropathic pain while intensive locomotor training (ILT) could reduce development of pain and partially reverse already established pain behaviors. Therefore, we evaluate the potential mutually beneficial anti-hypersensitivity effects of NPC transplants cells in combination with early or delayed ILT. NPC transplants were done at 4 weeks post-SCI. ILT, using a progressive ramping treadmill protocol, was initiated either 5 days post-SCI (early: pain prevention group) or at 5 weeks post-SCI (delayed: to reverse established pain) in male Sprague Dawley rats. Results showed that either ILT alone or NPCs alone could partially attenuate SCI neuropathic pain behaviors in both prevention and reversal paradigms. However, the combination of ILT with NPC transplants significantly enhanced neuropathic pain reduction on most of the outcome measures including tests for allodynia, hyperalgesia, and ongoing pain. Immunocytochemical and neurochemical analyses showed decreased pro-inflammatory markers and spinal pathology with individual treatments; these measures were further improved by the combination of either early or delayed ILT and GABAergic cellular transplantation. Lumbar dorsal horn GABAergic neuronal and process density were nearly restored to normal levels by the combination treatment. Together, these interventions may provide a less hostile and more supportive environment for promoting functional restoration in the spinal dorsal horn and attenuation of neuropathic pain following SCI. These findings suggest mutually beneficial effects of ILT and NPC transplants for reducing SCI neuropathic pain.
Collapse
|
8
|
Jergova S, Gordon CE, Gajavelli S, Sagen J. Experimental Gene Therapy with Serine-Histogranin and Endomorphin 1 for the Treatment of Chronic Neuropathic Pain. Front Mol Neurosci 2017; 10:406. [PMID: 29276474 PMCID: PMC5727090 DOI: 10.3389/fnmol.2017.00406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
The insufficient pain relief provided by current pharmacotherapy for chronic neuropathic pain is a serious medical problem. The enhanced glutamate signaling via NMDA receptors appears to be one of the key events in the development of chronic pain. Although effective, clinical use of systemic NMDA antagonists is limited by adverse effects such as hallucinations and motor dysfunction. Opioids are also potent analgesics but their chronic use is accompanied by tolerance and risk of addiction. However, combination of NMDA antagonists and opioids seems to provide a stable pain relieve at subthreshold doses of both substances, eliminating development of side effects. Our previous research showed that combined delivery of NMDA antagonist Serine histrogranin (SHG) and endomorphin1 (EM1) leads to attenuation of acute and chronic pain. The aim of this study was to design and evaluate an analgesic potency of the gene construct encoding SHG and EM1. Constructs with 1SHG copy in combination with EM1, 1SHG/EM1, and 6SHG/EM1 were intraspinally injected to animals with peripheral nerve injury-induced pain (chronic constriction injury, CCI) or spinal cord injury induced pain (clip compression model, SCI) and tactile and cold allodynia were evaluated. AAV2/8 particles were used for gene delivery. The results demonstrated 6SHG/EM1 as the most efficient for alleviation of pain-related behavior. The effect was observed up to 8 weeks in SCI animals, suggesting the lack of tolerance of possible synergistic effect between SHG and EM1. Intrathecal injection of SHG antibody or naloxone attenuated the analgesic effect in treated animals. Biochemical and histochemical evaluation confirmed the presence of both peptides in the spinal tissue. The results of this study showed that the injection of AAV vectors encoding combined SHG/EM constructs can provide long term attenuation of pain without overt adverse side effects. This approach may provide better treatment options for patients suffering from chronic pain.
Collapse
Affiliation(s)
- Stanislava Jergova
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Catherine E Gordon
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Shyam Gajavelli
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jacqueline Sagen
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
9
|
Fu H, Li F, Thomas S, Yang Z. Hyperbaric oxygenation alleviates chronic constriction injury (CCI)-induced neuropathic pain and inhibits GABAergic neuron apoptosis in the spinal cord. Scand J Pain 2017; 17:330-338. [PMID: 28927648 DOI: 10.1016/j.sjpain.2017.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIMS Dysfunction of GABAergic inhibitory controls contributes to the development of neuropathic pain. We examined our hypotheses that (1) chronic constriction injury (CCI)-induced neuropathic pain is associated with increased spinal GABAergic neuron apoptosis, and (2) hyperbaric oxygen therapy (HBO) alleviates CCI-induced neuropathic pain by inhibiting GABAergic neuron apoptosis. METHODS Male rats were randomized into 3 groups: CCI, CCI+HBO and the control group (SHAM). Mechanical allodynia was tested daily following CCI procedure. HBO rats were treated at 2.4 atmospheres absolute (ATA) for 60min once per day. The rats were euthanized and the spinal cord harvested on day 8 and 14 post-CCI. Detection of GABAergic cells and apoptosis was performed. The percentages of double positive stained cells (NeuN/GABA), cleaved caspase-3 or Cytochrome C in total GABAergic cells or in total NeuN positive cells were calculated. RESULTS HBO significantly alleviated mechanical allodynia. CCI-induced neuropathic pain was associated with significantly increased spinal apoptotic GABA-positive neurons. HBO considerably decreased these spinal apoptotic cells. Cytochrome-C-positive neurons and cleaved caspase-3-positive neurons were also significantly higher in CCI rats. HBO significantly decreased these positive cells. Caspase-3 mRNA was also significantly higher in CCI rats. HBO reduced mRNA expression of caspase-3. CONCLUSIONS CCI-induced neuropathic pain was associated with increased apoptotic GABAergic neurons induced by activation of key proteins of mitochondrial apoptotic pathways in the dorsal horn of the spinal cord. HBO alleviated CCI-induced neuropathic pain and reduced GABAergic neuron apoptosis. The beneficial effect of HBO may be via its inhibitory role in CCI-induced GABAergic neuron apoptosis by suppressing mitochondrial apoptotic pathways in the spinal cord. IMPLICATIONS Increased apoptotic GABAergic neurons induced by activation of key proteins of mitochondrial apoptotic pathways in the dorsal horn of the spinal cord is critical in CCI-induced neuropathic pain. The inhibitory role of HBO in GABAergic neuron apoptosis suppresses ongoing neuropathic pain.
Collapse
Affiliation(s)
- Huiqun Fu
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Fenghua Li
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Sebastian Thomas
- Pain Treatment Center, Upstate Medical University, Syracuse, NY 13210, USA
| | - Zhongjin Yang
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|