1
|
Luebke L, Gouverneur P, Szikszay TM, Adamczyk WM, Luedtke K, Grzegorzek M. Objective Measurement of Subjective Pain Perception with Autonomic Body Reactions in Healthy Subjects and Chronic Back Pain Patients: An Experimental Heat Pain Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:8231. [PMID: 37837061 PMCID: PMC10575054 DOI: 10.3390/s23198231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Multiple attempts to quantify pain objectively using single measures of physiological body responses have been performed in the past, but the variability across participants reduces the usefulness of such methods. Therefore, this study aims to evaluate whether combining multiple autonomic parameters is more appropriate to quantify the perceived pain intensity of healthy subjects (HSs) and chronic back pain patients (CBPPs) during experimental heat pain stimulation. HS and CBPP received different heat pain stimuli adjusted for individual pain tolerance via a CE-certified thermode. Different sensors measured physiological responses. Machine learning models were trained to evaluate performance in distinguishing pain levels and identify key sensors and features for the classification task. The results show that distinguishing between no and severe pain is significantly easier than discriminating lower pain levels. Electrodermal activity is the best marker for distinguishing between low and high pain levels. However, recursive feature elimination showed that an optimal subset of features for all modalities includes characteristics retrieved from several modalities. Moreover, the study's findings indicate that differences in physiological responses to pain in HS and CBPP remain small.
Collapse
Affiliation(s)
- Luisa Luebke
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Universität zu Lübeck, 23562 Lübeck, Germany; (L.L.); (T.M.S.); (K.L.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, 23562 Lübeck, Germany
| | - Philip Gouverneur
- Institute of Medical Informatics, University of Lübeck, 23562 Lübeck, Germany;
| | - Tibor M. Szikszay
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Universität zu Lübeck, 23562 Lübeck, Germany; (L.L.); (T.M.S.); (K.L.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, 23562 Lübeck, Germany
| | - Wacław M. Adamczyk
- Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland;
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3026, USA
| | - Kerstin Luedtke
- Institute of Health Sciences, Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Universität zu Lübeck, 23562 Lübeck, Germany; (L.L.); (T.M.S.); (K.L.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, 23562 Lübeck, Germany
| | - Marcin Grzegorzek
- Institute of Medical Informatics, University of Lübeck, 23562 Lübeck, Germany;
- Department of Knowledge Engineering, University of Economics in Katowice, 40-287 Katowice, Poland
| |
Collapse
|
2
|
Adamczyk WM, Szikszay TM, Nahman-Averbuch H, Skalski J, Nastaj J, Gouverneur P, Luedtke K. To Calibrate or not to Calibrate? A Methodological Dilemma in Experimental Pain Research. THE JOURNAL OF PAIN 2022; 23:1823-1832. [PMID: 35918020 DOI: 10.1016/j.jpain.2022.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/24/2022] [Accepted: 07/20/2022] [Indexed: 05/23/2023]
Abstract
To calibrate or not to calibrate? This question is raised by almost everyone designing an experimental pain study with supra-threshold stimulation. The dilemma is whether to individualize stimulus intensity to the pain threshold / supra-threshold pain level of each participant or whether to provide the noxious stimulus at a fixed intensity so that everyone receives the identical input. Each approach has unique pros and cons which need to be considered to i) accurately design an experiment, ii) enhance statistical inference in the given data and, iii) reduce bias and the influence of confounding factors in the individual study e.g., body composition, differences in energy absorption and previous experience. Individualization requires calibration, a procedure already irritating the nociceptive system but allowing to match the pain level across individuals. It leads to a higher variability of the stimulus intensity, thereby influencing the encoding of "noxiousness" by the central nervous system. Results might be less influenced by statistical phenomena such as ceiling/floor effects and the approach does not seem to rise ethical concerns. On the other hand, applying a fixed (standardized) intensity reduces the problem of intensity encoding leading to a large between-subjects variability in pain responses. Fixed stimulation intensities do not require pre-exposure. It can be proposed that one method is not preferable over another, however the choice depends on the study aim and the desired level of external validity. This paper discusses considerations for choosing the optimal approach for experimental pain studies and provides recommendations for different study designs. PERSPECTIVE: To calibrate pain or not? This dilemma is related to almost every experimental pain research. The decision is a trade-off between statistical power and greater control of stimulus encoding. The article decomposes both approaches and presents the pros and cons of either approach supported by data and simulation experiment.
Collapse
Affiliation(s)
- Waclaw M Adamczyk
- Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland; Institute of Health Sciences, Department of Physiotherapy, Pain & Exercise Research Luebeck (P.E.R.L.), University of Lübeck, Lübeck, Germany.
| | - Tibor M Szikszay
- Institute of Health Sciences, Department of Physiotherapy, Pain & Exercise Research Luebeck (P.E.R.L.), University of Lübeck, Lübeck, Germany
| | - Hadas Nahman-Averbuch
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Jacek Skalski
- Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Jakub Nastaj
- Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Philip Gouverneur
- Institute of Medical Informatics, University of Lübeck, Lübeck, Germany
| | - Kerstin Luedtke
- Institute of Health Sciences, Department of Physiotherapy, Pain & Exercise Research Luebeck (P.E.R.L.), University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
MATLAB Analysis of SP Test Results—An Unusual Parasympathetic Nervous System Activity in Low Back Leg Pain: A Case Report. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Skorupska Protocol (SP) test is a new validated tool used to confirm nociplastic pain related to muscles based on a pathological autonomic nervous system (ANS) activity due to muscle nociceptive noxious stimulation analyzed automatically. Two types of amplified vasomotor response are defined as possible: vasodilatation and vasoconstriction. Until now, amplified vasodilatation among low back leg pain and/or sciatica subjects in response to the SP test was confirmed. This case report presents an unusual vasomotor response to the SP test within the pain zone of a sciatica-like case. Conducted twice, the SP test confirmed amplified vasoconstriction within the daily complaint due to noxiously stimulated muscle-referred pain for the first time. Additionally, a new type of the SP test analysis using MATLAB was presented. The SP test supported by MATLAB seems to be an interesting solution to confirm nociplastic pain related to muscles based on the pathological autonomic reactivity within the lower leg back pain zone. Further studies using the SP test supported by MATLAB are necessary to compare the SP test results with the clinical state and other types of nociplastic pain examination.
Collapse
|
4
|
Kong Y, Posada-Quintero HF, Chon KH. Sensitive Physiological Indices of Pain Based on Differential Characteristics of Electrodermal Activity. IEEE Trans Biomed Eng 2021; 68:3122-3130. [PMID: 33705307 DOI: 10.1109/tbme.2021.3065218] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Electrodermal activity (EDA) has been widely used to assess human response to stressful stimuli, including pain. Recently, spectral analysis of EDA has been found to be more sensitive and reproducible for assessment of sympathetic arousal than traditional indices (e.g., tonic and phasic components). However, none of the aforementioned analyses incorporate the differential characteristics of EDA, which could be more sensitive to capturing fast-changing dynamics associated with pain responses. METHODS We have tested the feasibility of using the derivative of phasic EDA and the modified time-varying spectral analysis of EDA. Sixteen subjects underwent four levels of pain stimulation using electric stimulation. Five-second segments of EDA were used for each level of stimulation, and pre-stimulation segments were considered stimulation level 0. We used support vector machines with the radial basis function kernel and multi-layer perceptron for three different scenarios of stimulation-level classification tasks: five stimulation levels (four levels of stimulation plus no stimulation); low, medium, and high pain stimulation (stimulation levels 0-1, 2, and 3-4, respectively); and high stimulation levels (stimulation levels 3-4) vs. no stimulation. RESULTS The maximum balanced accuracies were 44% (five stimulation levels), 63% (for low, medium, and high pain stimulation), and 87% (sensitivity 83% and specificity 89%, for high stimulation vs. no stimulation). CONCLUSION The differential characteristics of EDA contributed highly to the accuracy of pain stimulation level detection of the classifiers. The external validity dataset was not considered in the study. SIGNIFICANCE Our approach has the potential for accurate pain quantification using EDA.
Collapse
|
5
|
Posada-Quintero HF, Kong Y, Chon KH. Objective pain stimulation intensity and pain sensation assessment using machine learning classification and regression based on electrodermal activity. Am J Physiol Regul Integr Comp Physiol 2021; 321:R186-R196. [PMID: 34133246 DOI: 10.1152/ajpregu.00094.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An objective measure of pain remains an unmet need of people with chronic pain, estimated to be 1/3 of the adult population in the United States. The current gold standard to quantify pain is highly subjective, based upon self-reporting with numerical or visual analog scale (VAS). This subjectivity complicates pain management and exacerbates the epidemic of opioid abuse. We have tested classification and regression machine learning models to objectively estimate pain sensation in healthy subjects using electrodermal activity (EDA). Twenty-three volunteers underwent pain stimulation using thermal grills. Three different "pain stimulation intensities" were induced for each subject, who reported the "pain sensation" right after each stimulus using a VAS (0-10). EDA data were collected throughout the experiment. For machine learning, we computed validated features of EDA based on time-domain decomposition, spectral analysis, and differential features. Models for estimation of pain stimulation intensity and pain sensation achieved maximum macroaveraged geometric mean scores of 69.7% and 69.2%, respectively, when three classes were considered ("No," "Low," and "High"). Regression of levels of stimulation intensity and pain sensation achieved R2 values of 0.357 and 0.47, respectively. Overall, the high variance and inconsistency of VAS scores led to lower performance of pain sensation classification, but regression was better for pain sensation than stimulation intensity. Our results provide that three levels of pain can be quantified with good accuracy and physiological evidence that sympathetic responses recorded by EDA are more correlated to the applied stimuli's intensity than to the pain sensation reported by the subject.
Collapse
Affiliation(s)
| | - Youngsun Kong
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Ki H Chon
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
6
|
Scheuren PS, Rosner J, Curt A, Hubli M. Pain-autonomic interaction: A surrogate marker of central sensitization. Eur J Pain 2020; 24:2015-2026. [PMID: 32794307 DOI: 10.1002/ejp.1645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Central sensitization represents a key pathophysiological mechanism underlying the development of neuropathic pain, often manifested clinically as mechanical allodynia and hyperalgesia. Adopting a mechanism-based treatment approach relies highly on the ability to assess the presence of central sensitization. The aim of the study was to investigate potential pain-autonomic readouts to operationalize experimentally induced central sensitization in the area of secondary hyperalgesia. METHODS Pinprick evoked potentials (PEPs) and sympathetic skin responses (SSRs) were recorded in 20 healthy individuals. Three blocks of PEP and SSR recordings were performed before and after heat-induced secondary hyperalgesia. All measurements were also performed before and after a control condition. Multivariate analyses were performed using linear mixed-effect regression models to examine the effect of experimentally induced central sensitization on PEP and SSR parameters (i.e. amplitudes, latencies and habituation) and on pinprick pain ratings. RESULTS The noxious heat stimulation induced robust mechanical hyperalgesia with a significant increase in PEP and SSR amplitudes (p < 0.001) in the area of secondary hyperalgesia. Furthermore, PEP and SSR habituation were reduced (p < 0.001) after experimentally induced central sensitization. CONCLUSIONS The findings demonstrate that combined recordings of PEPs and SSRs are sensitive to objectify experimentally induced central sensitization and may have a great potential to reveal its presence in clinical pain conditions. Corroborating current pain phenotyping with pain-autonomic markers has the potential to unravel central sensitization along the nociceptive neuraxis and might provide a framework for mechanistically founded therapies. SIGNIFICANCE Our findings provide evidence that combined recordings of sympathetic skin responses (SSRs) and pinprick evoked potentials (PEPs) might be able to unmask central sensitization induced through a well-established experimental pain model in healthy individuals. As such, these novel readouts of central sensitization might attain new insights towards complementing clinical pain phenotyping.
Collapse
Affiliation(s)
- Paulina S Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Posada-Quintero HF, Kong Y, Nguyen K, Tran C, Beardslee L, Chen L, Guo T, Cong X, Feng B, Chon KH. Using electrodermal activity to validate multilevel pain stimulation in healthy volunteers evoked by thermal grills. Am J Physiol Regul Integr Comp Physiol 2020; 319:R366-R375. [PMID: 32726157 DOI: 10.1152/ajpregu.00102.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have tested the feasibility of thermal grills, a harmless method to induce pain. The thermal grills consist of interlaced tubes that are set at cool or warm temperatures, creating a painful "illusion" (no tissue injury is caused) in the brain when the cool and warm stimuli are presented collectively. Advancement in objective pain assessment research is limited because the gold standard, the self-reporting pain scale, is highly subjective and only works for alert and cooperative patients. However, the main difficulty for pain studies is the potential harm caused to participants. We have recruited 23 subjects in whom we induced electric pulses and thermal grill (TG) stimulation. The TG effectively induced three different levels of pain, as evidenced by the visual analog scale (VAS) provided by the subjects after each stimulus. Furthermore, objective physiological measurements based on electrodermal activity showed a significant increase in levels as stimulation level increased. We found that VAS was highly correlated with the TG stimulation level. The TG stimulation safely elicited pain levels up to 9 out of 10. The TG stimulation allows for extending studies of pain to ranges of pain in which other stimuli are harmful.
Collapse
Affiliation(s)
| | | | | | - Cara Tran
- University of Connecticut, Storrs, Connecticut
| | - Luke Beardslee
- Emory University School of Medicine Department of Surgery, Atlanta, Georgia
| | - Longtu Chen
- University of Connecticut, Storrs, Connecticut
| | | | | | - Bin Feng
- University of Connecticut, Storrs, Connecticut
| | - Ki H Chon
- University of Connecticut, Storrs, Connecticut
| |
Collapse
|
8
|
Kano M, Yoshizawa M, Kono K, Muratsubaki T, Morishita J, Van Oudenhove L, Yagihashi M, Mugikura S, Dupont P, Takase K, Kanazawa M, Fukudo S. Parasympathetic activity correlates with subjective and brain responses to rectal distension in healthy subjects but not in non-constipated patients with irritable bowel syndrome. Sci Rep 2019; 9:7358. [PMID: 31089154 PMCID: PMC6517375 DOI: 10.1038/s41598-019-43455-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
The nociceptive and autonomic nervous systems (ANS) are significantly intertwined. Decoupling of these systems may occur in pathological pain conditions, including irritable bowel syndrome (IBS). We investigated ANS activity and its association with visceral perception and brain activity during rectal distention in 27 patients with non-constipated IBS and 33 controls by assessing heart rate variability (HRV) using electrocardiography at rest, before, and during colorectal distention. Brain responses to colorectal distention were measured using functional magnetic resonance imaging and correlated with individual ANS function parameters. The IBS group displayed blunted sympathovagal balance [low/high-frequency ratio (LF:HF) of HRV] in response to colorectal distention compared with controls (P = 0.003). In controls, basal parasympathetic tone (HF component of HRV) was significantly negatively correlated with toleration threshold to the rectal distention, but not in patients with IBS (group comparison P = 0.04). Further, a positive correlation between baseline HF values and neural responses to rectal distension was found in the right caudate, bilateral dorsolateral anterior cingulate cortex, and pregenual anterior cingulate cortex in the control group but not in the IBS group. The results indicate abnormal interactions between ANS activity and the brain mechanisms underlying visceral perception in patients with IBS.
Collapse
Affiliation(s)
- Michiko Kano
- Sukawa Clinic, Kirari Health Coop, Fukushima, Japan.
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | - Makoto Yoshizawa
- Research Division on Advanced Information Technology, Cyberscience Center, Tohoku University, Sendai, Japan
| | - Keiji Kono
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tomohiko Muratsubaki
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Joe Morishita
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Lukas Van Oudenhove
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Mao Yagihashi
- Dept. Biodesign, Clinical Research, Innovation and Education Center (CRIETO), Tohoku University Hospital, Sendai, Japan
| | - Shunji Mugikura
- Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium
| | - Kei Takase
- Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Motoyori Kanazawa
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shin Fukudo
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|