1
|
Wu Q, Li X, Zhang Y, Chen S, Jin R, Peng W. Analgesia of noninvasive electrical stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. J Psychosom Res 2024; 185:111868. [PMID: 39142194 DOI: 10.1016/j.jpsychores.2024.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE The dorsolateral prefrontal cortex (DLPFC) is implicated in pain modulation, suggesting its potential as a therapeutic target for pain relief. However, studies on transcranial electrical stimulation (tES) over the DLPFC yielded diverse results, likely due to differences in stimulation protocols or pain assessment methods. This study aims to evaluate the analgesic effects of DLPFC-tES using a meta-analytical approach. METHODS A meta-analysis of 29 studies involving 785 participants was conducted. The effects of genuine and sham DLPFC-tES on pain perception were examined in healthy individuals and patients with clinical pain. Subgroup analyses explored the impact of stimulation parameters and pain modalities. RESULTS DLPFC-tES did not significantly affect pain outcomes in healthy populations but showed promise in reducing pain-intensity ratings in patients with clinical pain (Hedges' g = -0.78, 95% CI = [-1.33, -0.24], p = 0.005). Electrode placement significantly influenced the analgesic effect, with better results observed when the anode was at F3 and the cathode at F4. CONCLUSIONS DLPFC-tES holds potential as a cost-effective pain management option, particularly for clinical populations. Optimizing electrode placement, especially with an symmetrical configuration, may enhance therapeutic efficacy. These findings underscore the promise of DLPFC-tES for alleviating perceived pain intensity in clinical settings, emphasizing the importance of electrode placement optimization.
Collapse
Affiliation(s)
- Qiqi Wu
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yinhua Zhang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Shengxiong Chen
- Medical Rehabilitation Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Richu Jin
- Tech X Academy, Shenzhen Polytechnic University, Shenzhen, China.
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Navarro-López V, Cardozo-Burgos L, Urbe-Murguizu U, Cancelas-Felgueras MD, Del-Valle-Gratacós M. Transcranial direct current stimulation in the management of pain in oncology patients. A systematic review and meta-analysis with meta-regression of randomized controlled trials. Disabil Rehabil 2024:1-11. [PMID: 39340309 DOI: 10.1080/09638288.2024.2399227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE To evaluate the efficacy of transcranial direct current stimulation (tDCS) in pain management in subjects with oncologic process. MATERIAL AND METHODS Several databases were searched in December 2023. Randomized Controlled Trials that evaluated the application of tDCS on pain in adults with oncologic process were selected. Random-effects meta-analysis with 95%CI were used to quantify the change scores in pain between tDCS and control groups. RESULTS Six trials with 482 participants were included. There were significant differences in favor of tDCS in pain intensity in surgical oncology patients compared to sham stimulation (p < 0.001). Non-surgical patients showed no significant effect. Meta-regression analysis in this group of patients showed that the timing of the evaluation moderated the effect of tDCS on pain (p= .042), with longer time after tDCS being associated with greater pain reduction. CONCLUSIONS The application of a-tDCS for at least 20 min, with a current density higher than 0.057 mA/cm2, applied over M1, left DLPFC, or the insula area, between 2-5 sessions appears to be an effective and safe treatment of pain in surgical oncology patients compared to sham. The tDCS appears to be more effective for high-intensity pain, and in the long term.
Collapse
Affiliation(s)
- Víctor Navarro-López
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
- Movement Analysis, Biomechanics, Ergonomics, and Motor Control Laboratory, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | | | | | | | | |
Collapse
|
3
|
Kim DJ, Nascimento TD, Lim M, Danciu T, Zubieta JK, Scott PJ, Koeppe R, Kaciroti N, DaSilva AF. Exploring HD-tDCS Effect on μ-opioid Receptor and Pain Sensitivity in Temporomandibular Disorder: A Pilot Randomized Clinical Trial Study. THE JOURNAL OF PAIN 2024; 25:1070-1081. [PMID: 37956741 PMCID: PMC11705548 DOI: 10.1016/j.jpain.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
This study explored the association between experimentally-induced pain sensitivity and µ-opioid receptor (μOR) availability in patients with temporomandibular disorder (TMD) and further investigated any changes in the pain and μOR availability following high-definition transcranial direct current stimulation (HD-tDCS) over the primary motor cortex (M1) with pilot randomized clinical trials. Seven patients with TMD completed either active (n = 3) or sham treatment (n = 4) for 10 daily sessions and underwent positron emission tomography (PET) scans with [11C]carfentanil, a selective μOR agonist, a week before and after treatment. PET imaging consisted of an early resting and late phase with the sustained masseteric pain challenge by computer-controlled injection of 5% hypertonic saline. We also included 12 patients with TMD, obtained from our previous study, for baseline PET analysis. We observed that patients with more sensitivity to pain, indicated by lower infusion rate, had less μOR availability in the right amygdala during the late phase. Moreover, active M1 HD-tDCS, compared to sham, increased μOR availability post-treatment in the thalamus during the early resting phase and the amygdala, hippocampus, and parahippocampal gyrus during the late pain challenge phase. Importantly, increased μOR availability post-treatment in limbic structures including the amygdala and hippocampus was associated with decreased pain sensitivity. The findings underscore the role of the μOR system in pain regulation and the therapeutic potential of HD-tDCS for TMD. Nonetheless, large-scale studies are necessary to establish the clinical significance of these results. TRIAL REGISTRATION: ClinicalTrial.gov (NCT03724032) PERSPECTIVE: This study links pain sensitivity and µ-opioid receptors in patients with TMD. HD-tDCS over M1 improved µOR availability, which was associated with reduced pain sensitivity. Implications for TMD pain management are promising, but larger clinical trials are essential for validation.
Collapse
Affiliation(s)
- Dajung J. Kim
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Thiago D. Nascimento
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| | - Manyoel Lim
- Food Processing Research Group, Food Convergence Research Division, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| | - Theodora Danciu
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Jon-Kar Zubieta
- Department of Psychiatry, Mass General Brigham, Newton-Wellesley Hospital, Newton, Massachusetts
| | - Peter J.H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Robert Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Niko Kaciroti
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Alexandre F. DaSilva
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
4
|
Gurdiel-Álvarez F, González-Zamorano Y, Lerma-Lara S, Gómez-Soriano J, Sánchez-González JL, Fernández-Carnero J, Navarro-López V. Transcranial Direct Current Stimulation (tDCS) Effects on Quantitative Sensory Testing (QST) and Nociceptive Processing in Healthy Subjects: A Systematic Review and Meta-Analysis. Brain Sci 2023; 14:9. [PMID: 38275514 PMCID: PMC10813344 DOI: 10.3390/brainsci14010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The aim of this study is to determine the effect that different tDCS protocols have on pain processing in healthy people, assessed using quantitative sensory tests (QST) and evoked pain intensity. METHODS We systematically searched in EMBASE, CINAHL, PubMed, PEDro, PsycInfo, and Web of Science. Articles on tDCS on a healthy population and regarding QST, such as pressure pain thresholds (PPT), heat pain thresholds (HPT), cold pain threshold (CPT), or evoked pain intensity were selected. Quality was analyzed using the Cochrane Risk of Bias Tool and PEDro scale. RESULTS Twenty-six RCTs were included in the qualitative analysis and sixteen in the meta-analysis. There were no significant differences in PPTs between tDCS and sham, but differences were observed when applying tDCS over S1 in PPTs compared to sham. Significant differences in CPTs were observed between tDCS and sham over DLPFC and differences in pain intensity were observed between tDCS and sham over M1. Non-significant effects were found for the effects of tDCS on HPTs. CONCLUSION tDCS anodic over S1 stimulation increases PPTs, while a-tDCS over DLPFC affects CPTs. The HPTs with tDCS are worse. Finally, M1 a-tDCS seems to reduce evoked pain intensity in healthy subjects.
Collapse
Affiliation(s)
- Francisco Gurdiel-Álvarez
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain; (F.G.-Á.); (Y.G.-Z.)
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, 28032 Madrid, Spain
| | - Yeray González-Zamorano
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain; (F.G.-Á.); (Y.G.-Z.)
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, 28032 Madrid, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28032 Madrid, Spain;
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain
| | - Sergio Lerma-Lara
- Department of Physical Therapy, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
| | - Julio Gómez-Soriano
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Universidad Castilla La Mancha, 45071 Toledo, Spain;
| | - Juan Luis Sánchez-González
- Faculty of Nursing and Physiotherapy, Department of Nursing and Physiotherapy, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Josué Fernández-Carnero
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, 28032 Madrid, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28032 Madrid, Spain;
- La Paz Hospital Institute for Health Research, IdiPAZ, 28922 Madrid, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Víctor Navarro-López
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28032 Madrid, Spain;
- Movement Analysis, Biomechanics, Ergonomics, and Motor Control Laboratory, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| |
Collapse
|
5
|
Garcia-Larrea L. Non-invasive cortical stimulation for drug-resistant pain. Curr Opin Support Palliat Care 2023; 17:142-149. [PMID: 37339516 DOI: 10.1097/spc.0000000000000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
PURPOSE OF REVIEW Neuromodulation techniques are being increasingly used to alleviate pain and enhance quality of life. Non-invasive cortical stimulation was originally intended to predict the efficacy of invasive (neurosurgical) techniques, but has now gained a place as an analgesic procedure in its own right. RECENT FINDINGS Repetitive transcranial magnetic stimulation (rTMS): Evidence from 14 randomised, placebo-controlled trials (~750 patients) supports a significant analgesic effect of high-frequency motor cortex rTMS in neuropathic pain. Dorsolateral frontal stimulation has not proven efficacious so far. The posterior operculo-insular cortex is an attractive target but evidence remains insufficient. Short-term efficacy can be achieved with NNT (numbers needed to treat) ~2-3, but long-lasting efficacy remains a challenge.Like rTMS, transcranial direct-current stimulation (tDCS) induces activity changes in distributed brain networks and can influence various aspects of pain. Lower cost relative to rTMS, few safety issues and availability of home-based protocols are practical advantages. The limited quality of many published reports lowers the level of evidence, which will remain uncertain until more prospective controlled studies are available. SUMMARY Both rTMS and tDCS act preferentially upon abnormal hyperexcitable states of pain, rather than acute or experimental pain. For both techniques, M1 appears to be the best target for chronic pain relief, and repeated sessions over relatively long periods of time may be required to obtain clinically significant benefits. Patients responsive to tDCS may differ from those improved by rTMS.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Centre for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne
- University Hospital Pain Centre (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
6
|
Toufexis C, Macgregor M, Lewis A, Flood A. The effects of high-definition transcranial direct current stimulation on pain modulation and stress-induced hyperalgesia. Br J Pain 2023; 17:244-254. [PMID: 37342399 PMCID: PMC10278446 DOI: 10.1177/20494637221150333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Background The dorsolateral prefrontal cortex (DLPFC) has been implicated in the modulation of pain-related signals. Given this involvement, manipulation of the DLPFC through transcranial direct current stimulation (tDCS) may influence internal pain modulation and decrease pain sensitivity. Acute stress is also thought to affect pain, with increased pain sensitivity observed following the presentation of an acute stressor. Methods A total of 40 healthy adults (50% male), ranging in age from 19 to 28 years (M = 22.13, SD = 1.92), were randomly allocated to one of two stimulation conditions (active and sham). High-definition tDCS (HD-tDCS) was applied for 10 min at 2 mA, with the anode placed over the left DLPFC. Stress was induced after HD-tDCS administration using a modified version of the Trier Social Stress Test. Pain modulation and sensitivity were assessed through the conditioned pain modulation paradigm and pressure pain threshold measurements, respectively. Results Compared to sham stimulation, active stimulation produced a significant increase in pain modulation capacity. No significant change in pain sensitivity and stress-induced hyperalgesia was observed following active tDCS. Conclusion This research shows novel evidence that anodal HD-tDCS over the DLPFC significantly enhances pain modulation. However, HD-tDCS had no effect on pain sensitivity or stress-induced hyperalgesia. The observed effect on pain modulation after a single dose of HD-tDCS over the DLPFC is a novel finding that informs further research into the utility of HD-tDCS in the treatment of chronic pain by presenting the DLPFC as an alternative target site for tDCS-induced analgesia.
Collapse
Affiliation(s)
- Constantino Toufexis
- Faculty of Health, Discipline of Psychology, University of Canberra, Canberra, ACT, Australia
| | - Molly Macgregor
- Faculty of Health, Discipline of Psychology, University of Canberra, Canberra, ACT, Australia
| | - Aidan Lewis
- Faculty of Health, Discipline of Psychology, University of Canberra, Canberra, ACT, Australia
| | - Andrew Flood
- Faculty of Health, Discipline of Psychology, University of Canberra, Canberra, ACT, Australia
- University of Canberra Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
7
|
Multifocal tDCS Targeting the Motor Network Modulates Event-Related Cortical Responses During Prolonged Pain. THE JOURNAL OF PAIN 2023; 24:226-236. [PMID: 36162791 DOI: 10.1016/j.jpain.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023]
Abstract
Multifocal transcranial direct current stimulation (tDCS) targeting several brain regions is promising for inducing cortical plasticity. It remains unknown whether multifocal tDCS aimed at the resting-state motor network (network-tDCS) can revert N2-P2 cortical responses otherwise attenuated during prolonged experimental pain. Thirty-eight healthy subjects participated in 2 sessions separated by 24 hours (Day1, Day2) of active (n = 19) or sham (n = 19) network-tDCS. Experimental pain induced by topical capsaicin was maintained for 24 hours and assessed using a numerical rating scale. Electrical detection and pain thresholds, and N2-P2 evoked potentials (electroencephalography) to noxious electrical stimulation were recorded before capsaicin-induced pain (Day1-baseline), after capsaicin application (Day1-post-cap), and after 2 sessions of network-tDCS (Day2). Capsaicin induced moderate pain at Day1-post-cap, which further increased at Day2 in both groups (P = .01). Electrical detection/pain thresholds did not change over time. N2-P2 responses were reduced on Day1-post-cap compared to Day1-baseline (P = .019). At Day2 compared with Day1-post-cap, N2-P2 responses were significantly higher in the Active network-tDCS group (P<.05), while the sham group remained inhibited. These results suggest that tDCS targeting regions associated with the motor network may modulate the late evoked brain responses to noxious peripheral stimulation otherwise initially inhibited by capsaicin-induced pain. PERSPECTIVE: This study extends the evidence of N2-P2 reduction due to capsaicin-induced pain from 30 minutes to 24 hrs. Moreover, 2 sessions of tDCS targeting the motor network in the early stage of nociceptive pain may revert the inhibition of N2-P2 associated with capsaicin-induced pain.
Collapse
|
8
|
Kold S, Graven-Nielsen T. Modulation of central pain mechanisms using high-definition transcranial direct current stimulation: A double-blind, sham-controlled study. Eur J Pain 2023; 27:303-315. [PMID: 36451616 PMCID: PMC10107535 DOI: 10.1002/ejp.2060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND The use of high-definition transcranial direct current stimulation (HD-tDCS) has shown analgesic effects in some chronic pain patients, but limited anti-nociceptive effects in healthy asymptomatic subjects. METHODS This double-blinded sham-controlled study assessed the effects of HD-tDCS applied on three consecutive days on central pain mechanisms in healthy participants with (N = 40) and without (N = 40) prolonged experimental pain induced by intramuscular injection of nerve growth factor into the right hand on Day 1. Participants were randomly assigned to Sham-tDCS (N = 20 with pain, N = 20 without) or Active-tDCS (N = 20 with pain, N = 20 without) targeting simultaneously the primary motor cortex and dorsolateral prefrontal cortex for 20 min with 2 mA stimulation intensity. Central pain mechanisms were assessed by cuff algometry on the legs measuring pressure pain sensitivity, temporal summation of pain (TSP) and conditioned pain modulation (CPM), at baseline and after HD-tDCS on Day 2 and Day 3. Based on subject's assessment of received HD-tDCS (sham or active), they were effectively blinded. RESULTS Compared with Sham-tDCS, Active-tDCS did not significantly reduce the average NGF-induced pain intensity. Tonic pain-induced temporal summation at Day 2 and Day 3 was significantly lower in the NGF-pain group under Active-tDCS compared to the pain group with Sham-tDCS (p ≤ 0.05). No significant differences were found in the cuff pressure pain detection/tolerance thresholds or CPM effect across the 3 days of HD-tDCS in any of the four groups. CONCLUSION HD-tDCS reduced the facilitation of TSP caused by tonic pain suggesting that efficacy of HD-tDCS might depend on the presence of sensitized central pain mechanisms.
Collapse
Affiliation(s)
- Sebastian Kold
- Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
9
|
Xiong HY, Cao YQ, Du SH, Yang QH, He SY, Wang XQ. Effects of High-Definition Transcranial Direct Current Stimulation Targeting the Anterior Cingulate Cortex on the Pain Thresholds: A Randomized Controlled Trial. PAIN MEDICINE 2023; 24:89-98. [PMID: 36066447 DOI: 10.1093/pm/pnac135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The majority of existing clinical studies used active transcranial direct current stimulation (tDCS) over superficial areas of the pain neuromatrix to regulate pain, with conflicting results. Few studies have investigated the effect of tDCS on pain thresholds by focusing on targets in deep parts of the pain neuromatrix. METHODS This study applied a single session of high-definition tDCS (HD-tDCS) targeting the anterior cingulate cortex (ACC) and used a parallel and sham-controlled design to compare the antinociceptive effects in healthy individuals by assessing changes in pain thresholds. Sixty-six female individuals (mean age, 20.5 ± 2.4 years) were randomly allocated into the anodal, cathodal, or sham HD-tDCS groups. The primary outcome of the study was pain thresholds (pressure pain threshold, heat pain threshold, and cold pain threshold), which were evaluated before and after stimulation through the use of quantitative sensory tests. RESULTS Only cathodal HD-tDCS targeting the ACC significantly increased heat pain threshold (P < 0.05) and pressure pain threshold (P < 0.01) in healthy individuals compared with sham stimulation. Neither anodal nor cathodal HD-tDCS showed significant analgesic effects on cold pain threshold. Furthermore, no statistically significant difference was found in pain thresholds between anodal and sham HD-tDCS (P > 0.38). Independent of HD-tDCS protocols, the positive and negative affective schedule scores were decreased immediately after stimulation compared with baseline. CONCLUSIONS The present study has found that cathodal HD-tDCS targeting the ACC provided a strong antinociceptive effect (increase in pain threshold), demonstrating a positive biological effect of HD-tDCS.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yin-Quan Cao
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Si-Yi He
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
10
|
Using High-Definition Transcranial Alternating Current Stimulation to Treat Patients with Fibromyalgia: A Randomized Double-Blinded Controlled Study. Life (Basel) 2022; 12:life12091364. [PMID: 36143400 PMCID: PMC9506250 DOI: 10.3390/life12091364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
Objectives: This study aimed to investigate the safety and efficacy of high-definition transcranial alternating current stimulation (HD-tACS) to the left primary motor cortex (M1) in the treatment of fibromyalgia (FM) patients. Methods: In this randomized, double-blind, sham-controlled clinical trial, patients with FM were recruited in a teaching hospital. Thirty-eight patients were randomized to active HD-tACS (n = 19) or sham stimulation (n = 19). Active stimulation included a daily session of 20-min stimulation of 1 mA HD-tACS over the left M1 for ten sessions in two weeks. The primary outcome was the change in pain intensity and quality of life, assessed using the numeric rating scale (NRS) and the fibromyalgia impact questionnaire (FIQ) at baseline and after two weeks of treatment. Secondary outcomes included other core symptoms of FM (psychological distress, sleep quality, hyperalgesia measured by pressure pain threshold) and changes in biomarkers’ total Tau and Aβ1-42. All analyses were based on intention-to-treat for a significance level of p < 0.05. Results: Of the 38 randomized patients, 35 completed the study. After two weeks, HD-tACS induced a significant reduction in FIQ score post-treatment. However, there were no significant differences in NRS and FIQ scores compared to sham stimulation. Most adverse events were mild in severity. Nevertheless, one patient receiving HD-tACS attempted suicide during the trial. Conclusions: These results suggest that HD-tACS may effectively reduce pain, psychological distress, and symptom impacts in FM patients. However, we found no significant differences between the two groups. Future studies investigating HD-tACS in FM are warranted.
Collapse
|
11
|
Kold S, Graven-Nielsen T. Modulation Of Experimental Prolonged Pain and Sensitization Using High-Definition Transcranial Direct Current Stimulation: A Double-Blind, Sham-Controlled Study. THE JOURNAL OF PAIN 2022; 23:1220-1233. [PMID: 35202795 DOI: 10.1016/j.jpain.2022.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
High definition transcranial direct current stimulation (HD-tDCS) targeting brain areas involved in pain processing has shown analgesic effects in some chronic pain conditions, but less modulatory effect on mechanical and thermal pain thresholds in asymptomatic subjects. This double-blinded study assessed the HD-tDCS effects on experimental pain and hyperalgesia maintained for several days in healthy participants. Hyperalgesia and pain were assessed during three consecutive days following provocation of experimental pain (nerve growth factor injected into the right-hand muscle) and daily HD-tDCS sessions (20-minutes). Forty subjects were randomly assigned to Active-tDCS targeting primary motor cortex and dorsolateral prefrontal cortex simultaneously or Sham-tDCS. Tactile and pressure pain sensitivity were assessed before and after each HD-tDCS session, as well as the experimentally-induced pain intensity scored on a numerical rating scale (NRS). Subjects were effectively blinded to the type of HD-tDCS protocol. The Active-tDCS did not significantly reduce the NGF-induced NRS pain score (3.5±2.4) compared to Sham-tDCS (3.9±2.0, P > .05) on day 3 and both groups showed similarly NGF-decreased pressure pain threshold in the right hand (P < .001). Comparing Active-tDCS with Sham-tDCS, the manifestation of pressure hyperalgesia was delayed on day 1, and an immediate (pre-HD-tDCS to post-HD-tDCS) reduction in pressure hyperalgesia was found across all days (P < .05). PERSPECTIVE: The non-significant differences between Active-tDCS and Sham-tDCS on experimental prolonged pain and hyperalgesia suggest that HD-tDCS has no effect on moderate persistent experimental pain. The intervention may still have a positive effect in more severe pain conditions, with increased intensity, more widespread distribution, or increased duration and/or involving stronger affective components.
Collapse
Affiliation(s)
- Sebastian Kold
- Center for Neuroplasticity and Pain (CNAP), Aalborg University, Denmark
| | | |
Collapse
|
12
|
Hamed R, Khedr EM, Haridy NA, Mohamed KO, Elsawy S. Effects of transcranial direct current stimulation in pain and opioid consumption after spine surgery. Eur J Pain 2022; 26:1594-1604. [PMID: 35634761 DOI: 10.1002/ejp.1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/22/2022] [Accepted: 05/21/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has shown promising results in alleviating different types of pain. The present study compares the efficacy of 3 sessions of anodal tDCS applied over primary motor area (M1) or the left dorsolateral prefrontal cortex (DLPFC) or sham on reducing pain and the total opioid consumption in post-operative spine surgery patients. MATERIALS Sixty-seven out of 75 eligible patients for post-operative spine surgery were randomly allocated into one of the three experimental groups. Group A received anodal tDCS applied over M1 cortex, group B over left DLPF cortex (2mA, 20 min) and group C received sham tDCS, all for 3 consecutive postoperative days. Patients were evaluated using a visual analogue scale (VAS) and adynamic visual analogue scale (DVAS) at baseline, and on each of the treatment days. The total morphine consumption over the 3 post-operative days was assessed. RESULTS Two-way repeated measures ANOVA showed no statistically significant difference in resting VAS between the 3 groups. However, there was significant pain improvement (P< 0.001) in DVAS in both active groups (group A and B) compared to the sham group (group C) in the post-operative period, with no significant difference between the active groups. Morphine consumption was significantly reduced in both active groups compared with the sham group, but there was no difference in consumption between the active groups. CONCLUSION There was a significant post-operative reduction in morphine consumption and DVAS scores after three sessions of active tDCS. SIGNIFICANCE tDCS is a promising tool for alleviating pain in the field of postoperative spine surgery.
Collapse
Affiliation(s)
- Rasha Hamed
- Anesthesiology Department, Assiut University Hospital, Egypt
| | - Eman M Khedr
- Department of Neuropsychiatry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nourelhoda A Haridy
- Department of Neuropsychiatry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khaled O Mohamed
- Department of Neuropsychiatry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Saeid Elsawy
- Anesthesiology Department, Assiut University Hospital, Egypt
| |
Collapse
|
13
|
Mechanisms and manifestations in musculoskeletal pain: from experimental to clinical pain settings. Pain 2022; 163:S29-S45. [PMID: 35984370 DOI: 10.1097/j.pain.0000000000002690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/18/2023]
|
14
|
Garcia-Larrea L, Quesada C. Cortical stimulation for chronic pain: from anecdote to evidence. Eur J Phys Rehabil Med 2022; 58:290-305. [PMID: 35343176 PMCID: PMC9980528 DOI: 10.23736/s1973-9087.22.07411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidural stimulation of the motor cortex (eMCS) was devised in the 1990's, and has now largely supplanted thalamic stimulation for neuropathic pain relief. Its mechanisms of action involve activation of multiple cortico-subcortical areas initiated in the thalamus, with involvement of endogenous opioids and descending inhibition toward the spinal cord. Evidence for clinical efficacy is now supported by at least seven RCTs; benefits may persist up to 10 years, and can be reasonably predicted by preoperative use of non-invasive repetitive magnetic stimulation (rTMS). rTMS first developed as a means of predicting the efficacy of epidural procedures, then as an analgesic method on its own right. Reasonable evidence from at least six well-conducted RCTs favors a significant analgesic effect of high-frequency rTMS of the motor cortex in neuropathic pain (NP), and less consistently in widespread/fibromyalgic pain. Stimulation of the dorsolateral frontal cortex (DLPFC) has not proven efficacious for pain, so far. The posterior operculo-insular cortex is a new and attractive target but evidence remains inconsistent. Transcranial direct current stimulation (tDCS) is applied upon similar targets as rTMS and eMCS; it does not elicit action potentials but modulates the neuronal resting membrane state. tDCS presents practical advantages including low cost, few safety issues, and possibility of home-based protocols; however, the limited quality of most published reports entails a low level of evidence. Patients responsive to tDCS may differ from those improved by rTMS, and in both cases repeated sessions over a long time may be required to achieve clinically significant relief. Both invasive and non-invasive procedures exert their effects through multiple distributed brain networks influencing the sensory, affective and cognitive aspects of chronic pain. Their effects are mainly exerted upon abnormally sensitized pathways, rather than on acute physiological pain. Extending the duration of long-term benefits remains a challenge, for which different strategies are discussed in this review.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France - .,University Hospital Pain Center (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France -
| | - Charles Quesada
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France.,Department of Physiotherapy, Sciences of Rehabilitation Institute (ISTR), University Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
15
|
Bazzari AH, Bazzari FH. Advances in targeting central sensitization and brain plasticity in chronic pain. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00472-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AbstractMaladaptation in sensory neural plasticity of nociceptive pathways is associated with various types of chronic pain through central sensitization and remodeling of brain connectivity. Within this context, extensive research has been conducted to evaluate the mechanisms and efficacy of certain non-pharmacological pain treatment modalities. These include neurostimulation, virtual reality, cognitive therapy and rehabilitation. Here, we summarize the involved mechanisms and review novel findings in relation to nociceptive desensitization and modulation of plasticity for the management of intractable chronic pain and prevention of acute-to-chronic pain transition.
Collapse
|
16
|
Li X, Lin X, Yao J, Chen S, Hu Y, Liu J, Jin R. Effects of High-Definition Transcranial Direct Current Stimulation Over the Primary Motor Cortex on Cold Pain Sensitivity Among Healthy Adults. Front Mol Neurosci 2022; 15:853509. [PMID: 35370540 PMCID: PMC8971908 DOI: 10.3389/fnmol.2022.853509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Some clinical studies have shown promising effects of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) on pain relief. Nevertheless, a few studies reported no significant analgesic effects of tDCS, likely due to the complexity of clinical pain conditions. Human experimental pain models that utilize indices of pain in response to well-controlled noxious stimuli can avoid many confounds that are present in the clinical data. This study aimed to investigate the effects of high-definition tDCS (HD-tDCS) stimulation over M1 on sensitivity to experimental pain and assess whether these effects could be influenced by the pain-related cognitions and emotions. A randomized, double-blinded, crossover, and sham-controlled design was adopted. A total of 28 healthy participants received anodal, cathodal, or sham HD-tDCS over M1 (1 mA for 20 min) in different sessions, in which montage has the advantage of producing more focal stimulation. Using a cold pressor test, several indices reflecting the sensitivity to cold pain were measured immediately after HD-tDCS stimulation, such as cold pain threshold and tolerance and cold pain intensity and unpleasantness ratings. Results showed that only anodal HD-tDCS significantly increased cold pain threshold when compared with sham stimulation. Neither anodal nor cathodal HD-tDCS showed significant analgesic effects on cold pain tolerance, pain intensity, and unpleasantness ratings. Correlation analysis revealed that individuals that a had lower level of attentional bias to negative information benefited more from attenuating pain intensity rating induced by anodal HD-tDCS. Therefore, single-session anodal HD-tDCS modulates the sensory-discriminative aspect of pain perception as indexed by the increased pain threshold. In addition, the modulating effects of HD-tDCS on attenuating pain intensity to suprathreshold pain could be influenced by the participant’s negative attentional bias, which deserves to be taken into consideration in the clinical applications.
Collapse
Affiliation(s)
- Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xinxin Lin
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Junjie Yao
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Shengxiong Chen
- Medical Rehabilitation Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yu Hu
- Medical Rehabilitation Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Jiang Liu
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Richu Jin
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Richu Jin,
| |
Collapse
|
17
|
Jiang X, Wang Y, Wan R, Feng B, Zhang Z, Lin Y, Wang Y. The effect of high-definition transcranial direct current stimulation on pain processing in a healthy population: A single-blinded crossover controlled study. Neurosci Lett 2022; 767:136304. [PMID: 34695451 DOI: 10.1016/j.neulet.2021.136304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022]
Abstract
Transcranial direct current stimulation (tDCS) is increasingly used in pain treatment. tDCS targeting both primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) may modulate the descending pain inhibitory system, however, it remains controversial regarding the optimal stimulation region for pain modulation. Therefore, this study aimed to explore the effects of high-definition anodic stimulation of M1 and DLPFC on conditioned pain modulation (CPM) and pain thresholds and establish a preferred stimulation setting. Twenty-six healthy adults were randomly assigned to M1-tDCS, DLPFC-tDCS, or sham-tDCS groups. During the three sessions, each participant received an active or sham stimulation of 2 mA for 20 min, with at least 3 days' interval between sessions. Quantitative sensory tests were performed to obtain pressure pain threshold (PPT), cold pain threshold (CPT), and CPM before and after the tDCS intervention. Only M1-tDCS significantly increased CPM in healthy individuals compared with sham control (P = 0.004). No statistically significant difference was found in PPT and CPT between tDCS vs. sham control (P > 0.05). Our findings further support the important role of M1 as a target in pain regulation. Further large-scale, multicenter studies in chronic pain populations are needed to validate the alterations of distinct target brain regions related to pain and thus for an optimal target stimulation strategy in pain management.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China; Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yafei Wang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruihan Wan
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Sport Rehabilitation, Shenyang Sport University, Shenyang, China
| | - Beibei Feng
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Orthopedics & Traumatology, The University of Hong Kong, HKSAR, China
| | - Ziping Zhang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Sport Rehabilitation, Shenyang Sport University, Shenyang, China
| | - Yangyang Lin
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuling Wang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
18
|
Wan R, Wang Y, Feng B, Jiang X, Xu Y, Zhang Z, Liu Y, Wang Y. Effect of High-definition Transcranial Direct Current Stimulation on Conditioned Pain Modulation in Healthy Adults: A Crossover Randomized Controlled Trial. Neuroscience 2021; 479:60-69. [PMID: 34710538 DOI: 10.1016/j.neuroscience.2021.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023]
Abstract
The disorder of the conditioned pain modulation (CPM) system is one of the main causes of pain perception in individuals. High-definition transcranial direct current stimulation (HD-tDCS) targeting specific brain areas was indicated to have an analgesic effect possibly by activating the endogenous pain inhibition pathway evident in CPM. However, discrepancies were found in previous limited studies of varied homogeneity and quality. Therefore, the present study applied 2 mA HD-tDCS (20 min) in the left primary motor cortex (M1) among 35 healthy adults with a blinded crossover study design, to investigate its effectiveness on optimizing the analgesic effect in healthy individuals through assessing changes of the CPM. The univariate and multivariate general linear models were used to evaluate the intervention effect between-group on the Δ-value (after-intervention minus before-intervention) during CPM (primary outcome), pressure pain threshold (PPT), and cold pressure threshold (CPT) (secondary outcome), respectively. A significant between-group difference in Δ-CPM was found for active stimulation. HD-tDCS significantly improved the analgesic efficiency of Δ-CPM, compared with the sham control, after adjusting the confounding factors including age, gender, psychological status, as well as the sequence effect. The changes of CPM were positively correlated with the total physical activity volume. In conclusion, our findings provide evidence support to the effectiveness of HD-tDCS on endogenous pain modulation among healthy adults. Further studies are required to explore the analgesic effect of tDCS among patients with chronic pain, thereby facilitating optimal chronic pain management.
Collapse
Affiliation(s)
- Ruihan Wan
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Sport Rehabilitation, Shenyang Sport University, Shenyang, China
| | - Yafei Wang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Beibei Feng
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Orthopedics & Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Xue Jiang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yangfan Xu
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziping Zhang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- Department of Kinesiology, California State University, Northridge, United States
| | - Yuling Wang
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|