1
|
Oyama M, Watanabe S, Iwai T, Tanabe M. Selective inhibition of A-fiber-mediated excitatory transmission underlies the analgesic effects of KCNQ channel opening in the spinal dorsal horn. Neuropharmacology 2024; 254:109994. [PMID: 38750803 DOI: 10.1016/j.neuropharm.2024.109994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Neuronal voltage-gated KCNQ (Kv7) channels, expressed centrally and peripherally, mediate low-threshold and non-inactivating M-currents responsible for the control of tonic excitability of mammalian neurons. Pharmacological opening of KCNQ channels has been reported to generate analgesic effects in animal models of neuropathic pain. Here, we examined the possible involvement of central KCNQ channels in the analgesic effects of retigabine, a KCNQ channel opener. Behaviorally, intraperitoneally applied retigabine exerted analgesic effects on thermal and mechanical hypersensitivity in male mice developing neuropathic pain after partial sciatic nerve ligation, which was antagonized by the KCNQ channel blocker XE991 preadministered intraperitoneally and intrathecally. Intrathecally applied retigabine also exerted analgesic effects that were inhibited by intrathecally injected XE991. We then explored the synaptic mechanisms underlying the analgesic effects of retigabine in the spinal dorsal horn. Whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult male mice developing neuropathic pain, and the effects of retigabine on miniature and afferent-evoked postsynaptic currents were examined. Retigabine reduced the amplitude of A-fiber-mediated EPSCs without affecting C-fiber-mediated excitatory synaptic transmission. A-fiber-mediated EPSCs remained unaltered by retigabine in the presence of XE991, consistently with the behavioral findings. The frequency and amplitude of mEPSCs were not affected by retigabine. Thus, opening of KCNQ channels in the central terminals of primary afferent A-fibers inhibits excitatory synaptic transmission in the spinal dorsal horn, most likely contributing to the analgesic effect of retigabine.
Collapse
Affiliation(s)
- Misa Oyama
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Shun Watanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Takashi Iwai
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
2
|
Raiteri L. Interactions Involving Glycine and Other Amino Acid Neurotransmitters: Focus on Transporter-Mediated Regulation of Release and Glycine-Glutamate Crosstalk. Biomedicines 2024; 12:1518. [PMID: 39062091 PMCID: PMC11275102 DOI: 10.3390/biomedicines12071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Glycine plays a pivotal role in the Central Nervous System (CNS), being a major inhibitory neurotransmitter as well as a co-agonist of Glutamate at excitatory NMDA receptors. Interactions involving Glycine and other neurotransmitters are the subject of different studies. Functional interactions among neurotransmitters include the modulation of release through release-regulating receptors but also through transporter-mediated mechanisms. Many transporter-mediated interactions involve the amino acid transmitters Glycine, Glutamate, and GABA. Different studies published during the last two decades investigated a number of transporter-mediated interactions in depth involving amino acid transmitters at the nerve terminal level in different CNS areas, providing details of mechanisms involved and suggesting pathophysiological significances. Here, this evidence is reviewed also considering additional recent information available in the literature, with a special (but not exclusive) focus on glycinergic neurotransmission and Glycine-Glutamate interactions. Some possible pharmacological implications, although partly speculative, are also discussed. Dysregulations in glycinergic and glutamatergic transmission are involved in relevant CNS pathologies. Pharmacological interventions on glycinergic targets (including receptors and transporters) are under study to develop novel therapies against serious CNS pathological states including pain, schizophrenia, epilepsy, and neurodegenerative diseases. Although with limitations, it is hoped to possibly contribute to a better understanding of the complex interactions between glycine-mediated neurotransmission and other major amino acid transmitters, also in view of the current interest in potential drugs acting on "glycinergic" targets.
Collapse
Affiliation(s)
- Luca Raiteri
- Pharmacology and Toxicology Section, Department of Pharmacy (DIFAR), University of Genoa, 16148 Genoa, Italy;
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148 Genoa, Italy
| |
Collapse
|
3
|
Mortensen JS, Mikkelsen ANL, Wellendorph P. Ways of modulating GABA transporters to treat neurological disease. Expert Opin Ther Targets 2024; 28:529-543. [PMID: 39068514 DOI: 10.1080/14728222.2024.2383611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION The main inhibitory neurotransmitter in the central nervous system (CNS), γ-aminobutyric acid (GABA), is involved in a multitude of neurological and psychiatric disorders characterized by an imbalance in excitatory and inhibitory signaling. Regulation of extracellular levels of GABA is maintained by the four GABA transporters (GATs; GAT1, GAT2, GAT3, and BGT1), Na+/Cl--coupled transporters of the solute carrier 6 (SLC6) family. Despite mounting evidence for the involvement of the non-GAT1 GABA transporters in diseases, only GAT1 has successfully been translated into clinical practice via the drug tiagabine. AREAS COVERED In this review, all four GATs will be described in terms of their involvement in disease, and the most recent data on structure, function, expression, and localization discussed in relation to their potential role as drug targets. This includes an overview of various ways to modulate the GATs in relation to treatment of diseases caused by imbalances in the GABAergic system. EXPERT OPINION The recent publication of various GAT1 structures is an important milestone for future development of compounds targeting the GATs. Such information can provide much needed insight into mechanistic aspects of all GAT subtypes and be utilized to design improved ligands for this highly interesting drug target class.
Collapse
Affiliation(s)
- Jonas S Mortensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amalie N L Mikkelsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Ying Y, Liu W, Wang H, Shi J, Wang Z, Fei J. GABA transporter mGat4 is involved in multiple neural functions in mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119740. [PMID: 38697303 DOI: 10.1016/j.bbamcr.2024.119740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. The termination of GABA transmission is through the action of GABA transporters (GATs). mGAT4 (encoded by Slc6a11) is another GAT besides GAT1 (encoded by Slc6a1) that functions in GABA reuptake in CNS. Research on the function of mGAT4 is still in its infancy. We developed an mGat4 knockout mouse model (mGat4-/- mice) and performed a series of behavioral analyses for the first time to study the effect of mGat4 on biological processes in CNS. Our results indicated that homozygous mGat4-/- mice had less depression, anxiety-like behavior and more social activities than their wild-type littermate controls. However, they had weight loss and showed motor incoordination and imbalance. Meanwhile, mGat4-/- mice showed increased pain threshold and hypoalgesia behavior in nociceptive stimulus and learning and memory impairments. The expression of multiple components of the GABAergic system including GAD67, GABAA and KCC2 was altered. There is little or no compensatory change in mGat1. In a word, mGat4 may play a key role in normal motor coordination, sensation, emotion, learning and memory and could be the potential target of neurological disorders.
Collapse
Affiliation(s)
- Yue Ying
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Weitong Liu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Haoyue Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201203, China
| | - Jiahao Shi
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhugang Wang
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201203, China
| | - Jian Fei
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201203, China.
| |
Collapse
|
5
|
Pradier B, Segelcke D, Reichl S, Zahn PK, Pogatzki-Zahn EM. Spinal GABA transporter 1 contributes to evoked-pain related behavior but not resting pain after incision injury. Front Mol Neurosci 2023; 16:1282151. [PMID: 38130683 PMCID: PMC10734427 DOI: 10.3389/fnmol.2023.1282151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
The inhibitory function of GABA at the spinal level and its central modulation in the brain are essential for pain perception. However, in post-surgical pain, the exact mechanism and modes of action of GABAergic transmission have been poorly studied. This work aimed to investigate GABA synthesis and uptake in the incisional pain model in a time-dependent manner. Here, we combined assays for mechanical and heat stimuli-induced withdrawal reflexes with video-based assessments and assays for non-evoked (NEP, guarding of affected hind paw) and movement-evoked (MEP, gait pattern) pain-related behaviors in a plantar incision model in male rats to phenotype the effects of the inhibition of the GABA transporter (GAT-1), using a specific antagonist (NO711). Further, we determined the expression profile of spinal dorsal horn GAT-1 and glutamate decarboxylase 65/67 (GAD65/67) by protein expression analyses at four time points post-incision. Four hours after incision, we detected an evoked pain phenotype (mechanical, heat and movement), which transiently ameliorated dose-dependently following spinal inhibition of GAT-1. However, the NEP-phenotype was not affected. Four hours after incision, GAT-1 expression was significantly increased, whereas GAD67 expression was significantly reduced. Our data suggest that GAT-1 plays a role in balancing spinal GABAergic signaling in the spinal dorsal horn shortly after incision, resulting in the evoked pain phenotype. Increased GAT-1 expression leads to increased GABA uptake from the synaptic cleft and reduces tonic GABAergic inhibition at the post-synapse. Inhibition of GAT-1 transiently reversed this imbalance and ameliorated the evoked pain phenotype.
Collapse
Affiliation(s)
- Bruno Pradier
- Department of Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Sylvia Reichl
- Department of Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - P. K. Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, BG University Hospital Bergmannsheil, Ruhr-Universität Bochum, Bochum, Germany
| | - E. M. Pogatzki-Zahn
- Department of Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
6
|
Distinct synaptic mechanisms underlying the analgesic effects of γ-aminobutyric acid transporter subtypes 1 and 3 inhibitors in the spinal dorsal horn: erratum. Pain 2022; 163:e612. [PMID: 35302982 DOI: 10.1097/j.pain.0000000000002607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/26/2022]
|