1
|
Zhang X, Shen ZL, Ji YW, Yin C, Xiao C, Zhou C. Activation and polarization of striatal microglia and astrocytes are involved in bradykinesia and allodynia in early-stage parkinsonian mice. FUNDAMENTAL RESEARCH 2024; 4:806-819. [PMID: 39156564 PMCID: PMC11330119 DOI: 10.1016/j.fmre.2023.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/13/2023] [Accepted: 05/17/2023] [Indexed: 08/20/2024] Open
Abstract
In addition to the cardinal motor symptoms, pain is a major non-motor symptom of Parkinson's disease (PD). Neuroinflammation in the substantia nigra pars compacta and dorsal striatum is involved in neurodegeneration in PD. But the polarization of microglia and astrocytes in the dorsal striatum and their contribution to motor deficits and hyperalgesia in PD have not been characterized. In the present study, we observed that hemiparkinsonian mice established by unilateral 6-OHDA injection in the medial forebrain bundle exhibited motor deficits and mechanical allodynia. In these mice, both microglia and astrocytes in the dorsal striatum were activated and polarized to M1/M2 microglia and A1/A2 astrocytes as genes specific to these cells were upregulated. These effects peaked 7 days after 6-OHDA injection. Meanwhile, striatal astrocytes in parkinsonian mice also displayed hyperpolarized membrane potentials, enhanced voltage-gated potassium currents, and dysfunction in inwardly rectifying potassium channels and glutamate transporters. Systemic administration of minocycline, a microglia inhibitor, attenuated the expression of genes specific to M1 microglia and A1 astrocytes in the dorsal striatum (but not those specific to M2 microglia and A2 astrocytes), attenuated the damage in the nigrostriatal dopaminergic system, and alleviated the motor deficits and mechanical allodynia in parkinsonian mice. By contrast, local administration of minocycline into the dorsal striatum of parkinsonian mice mitigated only hyperalgesia. This study suggests that M1 microglia and A1 astrocytes in the dorsal striatum may play important roles in the development of pathophysiology underlying hyperalgesia in the early stages of PD.
Collapse
Affiliation(s)
- Xue Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Zi-Lin Shen
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Ya-Wei Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Chunyi Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
2
|
Han Y, Zhang JQ, Ji YW, Luan YW, Li SY, Geng HZ, Ji Y, Yin C, Liu S, Zhou CY, Xiao C. α4 nicotinic receptors on GABAergic neurons mediate a cholinergic analgesic circuit in the substantia nigra pars reticulata. Acta Pharmacol Sin 2024; 45:1160-1174. [PMID: 38438581 PMCID: PMC11130268 DOI: 10.1038/s41401-024-01234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) regulate pain pathways with various outcomes depending on receptor subtypes, neuron types, and locations. But it remains unknown whether α4β2 nAChRs abundantly expressed in the substantia nigra pars reticulata (SNr) have potential to mitigate hyperalgesia in pain states. We observed that injection of nAChR antagonists into the SNr reduced pain thresholds in naïve mice, whereas injection of nAChR agonists into the SNr relieved hyperalgesia in mice, subjected to capsaicin injection into the lower hind leg, spinal nerve injury, chronic constriction injury, or chronic nicotine exposure. The analgesic effects of nAChR agonists were mimicked by optogenetic stimulation of cholinergic inputs from the pedunculopontine nucleus (PPN) to the SNr, but attenuated upon downregulation of α4 nAChRs on SNr GABAergic neurons and injection of dihydro-β-erythroidine into the SNr. Chronic nicotine-induced hyperalgesia depended on α4 nAChRs in SNr GABAergic neurons and was associated with the reduction of ACh release in the SNr. Either activation of α4 nAChRs in the SNr or optogenetic stimulation of the PPN-SNr cholinergic projection mitigated chronic nicotine-induced hyperalgesia. Interestingly, mechanical stimulation-induced ACh release was significantly attenuated in mice subjected to either capsaicin injection into the lower hind leg or SNI. These results suggest that α4 nAChRs on GABAergic neurons mediate a cholinergic analgesic circuit in the SNr, and these receptors may be effective therapeutic targets to relieve hyperalgesia in acute and chronic pain, and chronic nicotine exposure.
Collapse
Affiliation(s)
- Yu Han
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu, 322099, China
| | - Jia-Qi Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ya-Wei Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yi-Wen Luan
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Wuxi People's Hospital, Wuxi, 214023, China
| | - Shu-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hui-Zhen Geng
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Su Liu
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Chun-Yi Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Cheng Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
3
|
Chen J, Gao Y, Bao ST, Wang YD, Jia T, Yin C, Xiao C, Zhou C. Insula→Amygdala and Insula→Thalamus Pathways Are Involved in Comorbid Chronic Pain and Depression-Like Behavior in Mice. J Neurosci 2024; 44:e2062232024. [PMID: 38453468 PMCID: PMC11007474 DOI: 10.1523/jneurosci.2062-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
The comorbidity of chronic pain and depression poses tremendous challenges for the treatment of either one because they exacerbate each other with unknown mechanisms. As the posterior insular cortex (PIC) integrates multiple somatosensory and emotional information and is implicated in either chronic pain or depression, we hypothesize that the PIC and its projections may contribute to the pathophysiology of comorbid chronic pain and depression. We show that PIC neurons were readily activated by mechanical, thermal, aversive, and stressful and appetitive stimulation in naive and neuropathic pain male mice subjected to spared nerve injury (SNI). Optogenetic activation of PIC neurons induced hyperalgesia and conditioned place aversion in naive mice, whereas inhibition of these neurons led to analgesia, conditioned place preference (CPP), and antidepressant effect in both naive and SNI mice. Combining neuronal tracing, optogenetics, and electrophysiological techniques, we found that the monosynaptic glutamatergic projections from the PIC to the basolateral amygdala (BLA) and the ventromedial nucleus (VM) of the thalamus mimicked PIC neurons in pain modulation in naive mice; in SNI mice, both projections were enhanced accompanied by hyperactivity of PIC, BLA, and VM neurons and inhibition of these projections led to analgesia, CPP, and antidepressant-like effect. The present study suggests that potentiation of the PIC→BLA and PIC→VM projections may be important pathophysiological bases for hyperalgesia and depression-like behavior in neuropathic pain and reversing the potentiation may be a promising therapeutic strategy for comorbid chronic pain and depression.
Collapse
Affiliation(s)
- Jing Chen
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Department of Anesthesiology, Binhai County People's Hospital, Yancheng 225559, China
| | - Yuan Gao
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Shu-Ting Bao
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying-Di Wang
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Tao Jia
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cui Yin
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng Xiao
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Chunyi Zhou
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
4
|
Wang YD, Bao ST, Gao Y, Chen J, Jia T, Yin C, Cao JL, Xiao C, Zhou C. The anterior cingulate cortex controls the hyperactivity in subthalamic neurons in male mice with comorbid chronic pain and depression. PLoS Biol 2024; 22:e3002518. [PMID: 38386616 PMCID: PMC10883538 DOI: 10.1371/journal.pbio.3002518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Neurons in the subthalamic nucleus (STN) become hyperactive following nerve injury and promote pain-related responses in mice. Considering that the anterior cingulate cortex (ACC) is involved in pain and emotion processing and projects to the STN, we hypothesize that ACC neurons may contribute to hyperactivity in STN neurons in chronic pain. In the present study, we showed that ACC neurons enhanced activity in response to noxious stimuli and to alterations in emotional states and became hyperactive in chronic pain state established by spared nerve injury of the sciatic nerve (SNI) in mice. In naïve mice, STN neurons were activated by noxious stimuli, but not by alterations in emotional states. Pain responses in STN neurons were attenuated in both naïve and SNI mice when ACC neurons were inhibited. Furthermore, optogenetic activation of the ACC-STN pathway induced bilateral hyperalgesia and depression-like behaviors in naive mice; conversely, inhibition of this pathway is sufficient to attenuate hyperalgesia and depression-like behaviors in SNI mice and naïve mice subjected to stimulation of STN neurons. Finally, mitigation of pain-like and depression-like behaviors in SNI mice by inhibition of the ACC-STN projection was eliminated by activation of STN neurons. Our results demonstrate that hyperactivity in the ACC-STN pathway may be an important pathophysiology in comorbid chronic pain and depression. Thus, the ACC-STN pathway may be an intervention target for the treatment of the comorbid chronic pain and depression.
Collapse
Affiliation(s)
- Ying-Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Shu-Ting Bao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan Gao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Chen
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Jia
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cheng Xiao
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunyi Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
5
|
Liang Y, Zhou Y, Moneruzzaman M, Wang Y. Optogenetic Neuromodulation in Inflammatory Pain. Neuroscience 2024; 536:104-118. [PMID: 37977418 DOI: 10.1016/j.neuroscience.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Inflammatory pain is one of the most prevalent forms of pain and negatively influences the quality of life. Neuromodulation has been an expanding field of pain medicine and is accepted by patients who have failed to respond to several conservative treatments. Despite its effectiveness, neuromodulation still lacks clinically robust evidence on inflammatory pain management. Optogenetics, which controls particular neurons or brain circuits with high spatiotemporal accuracy, has recently been an emerging area for inflammatory pain management and studying its mechanism. This review considers the fundamentals of optogenetics, including using opsins, targeting gene expression, and wavelength-specific light delivery techniques. The recent evidence on application and development of optogenetic neuromodulation in inflammatory pain is also summarised. The current limitations and challenges restricting the progression and clinical transformation of optogenetics in pain are addressed. Optogenetic neuromodulation in inflammatory pain has many potential targets, and developing strategies enabling clinical application is a desirable therapeutic approach and outcome.
Collapse
Affiliation(s)
- Yanan Liang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China; University of Health and Rehabilitation Sciences, Qingdao, China; Research Center for Basic Medical Sciences, Jinan, China
| | - Yaping Zhou
- Shandong Maternal and Child Health Hospital, Jinan, China
| | - Md Moneruzzaman
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China
| | - Yonghui Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
6
|
Jia T, Chen J, Wang YD, Xiao C, Zhou CY. A subthalamo-parabrachial glutamatergic pathway is involved in stress-induced self-grooming in mice. Acta Pharmacol Sin 2023; 44:2169-2183. [PMID: 37322164 PMCID: PMC10618182 DOI: 10.1038/s41401-023-01114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Excessive self-grooming is an important behavioral phenotype of the stress response in rodents. Elucidating the neural circuit that regulates stress-induced self-grooming may suggest potential treatment to prevent maladaptation to stress that is implicated in emotional disorders. Stimulation of the subthalamic nucleus (STN) has been found to induce strong self-grooming. In this study we investigated the role of the STN and a related neural circuit in mouse stress-related self-grooming. Body-restraint and foot-shock stress-induced self-grooming models were established in mice. We showed that both body restraint and foot shock markedly increased the expression of c-Fos in neurons in the STN and lateral parabrachial nucleus (LPB). Consistent with this, the activity of STN neurons and LPB glutamatergic (Glu) neurons, as assessed with fiber photometry recording, was dramatically elevated during self-grooming in the stressed mice. Using whole-cell patch-clamp recordings in parasagittal brain slices, we identified a monosynaptic projection from STN neurons to LPB Glu neurons that regulates stress-induced self-grooming in mice. Enhanced self-grooming induced by optogenetic activation of the STN-LPB Glu pathway was attenuated by treatment with fluoxetine (18 mg·kg-1·d-1, p.o., for 2 weeks) or in the presence of a cage mate. Furthermore, optogenetic inhibition of the STN-LPB pathway attenuated stress-related but not natural self-grooming. Taken together, these results suggest that the STN-LPB pathway regulates the acute stress response and is a potential target for intervention in stress-related emotional disorders.
Collapse
Affiliation(s)
- Tao Jia
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jing Chen
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ying-di Wang
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Cheng Xiao
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Chun-Yi Zhou
- Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
7
|
Lin S, Shu Y, Zhang C, Wang L, Huang P, Pan Y, Ding J, Sun B, Li D, Wu Y. Globus pallidus internus versus subthalamic nucleus deep brain stimulation for isolated dystonia: A 3-year follow-up. Eur J Neurol 2023; 30:2629-2640. [PMID: 37235703 DOI: 10.1111/ene.15895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND PURPOSE Bilateral deep brain stimulation (DBS) surgery targeting the globus pallidus internus (GPi) or the subthalamic nucleus (STN) is widely used in medication-refractory dystonia. However, evidence regarding target selection considering various symptoms remains limited. This study aimed to compare the effectiveness of these two targets in patients with isolated dystonia. METHODS This retrospective study evaluated 71 consecutive patients (GPi-DBS group, n = 32; STN-DBS group, n = 39) with isolated dystonia. Burke-Fahn-Marsden Dystonia Rating Scale scores and quality of life were evaluated preoperatively and at 1, 6, 12, and 36 months postoperatively. Cognition and mental status were assessed preoperatively and at 36 months postoperatively. RESULTS Targeting the STN (STN-DBS) yielded effects within 1 month (65% vs. 44%; p = 0.0076) and was superior at 1 year (70% vs. 51%; p = 0.0112) and 3 years (74% vs. 59%; p = 0.0138). For individual symptoms, STN-DBS was preferable for eye involvement (81% vs. 56%; p = 0.0255), whereas targeting the GPi (GPi-DBS) was better for axis symptoms, especially for the trunk (82% vs. 94%; p = 0.015). STN-DBS was also favorable for generalized dystonia at 36-month follow-up (p = 0.04) and required less electrical energy (p < 0.0001). Disability, quality of life, and depression and anxiety measures were also improved. Neither target influenced cognition. CONCLUSIONS We demonstrated that the GPi and STN are safe and effective targets for isolated dystonia. The STN has the benefits of fast action and low battery consumption, and is superior for ocular dystonia and generalized dystonia, while the GPi is better for trunk involvement. These findings may offer guidance for future DBS target selection for different types of dystonia.
Collapse
Affiliation(s)
- Suzhen Lin
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimei Shu
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingbing Wang
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Center for Functional Neurosurgery, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianqing Ding
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwen Wu
- Department of Neurology & Institute of Neurology, RuiJin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Ji YW, Shen ZL, Zhang X, Zhang K, Jia T, Xu X, Geng H, Han Y, Yin C, Yang JJ, Cao JL, Zhou C, Xiao C. Plasticity in ventral pallidal cholinergic neuron-derived circuits contributes to comorbid chronic pain-like and depression-like behaviour in male mice. Nat Commun 2023; 14:2182. [PMID: 37069246 PMCID: PMC10110548 DOI: 10.1038/s41467-023-37968-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
Nucleus- and cell-specific interrogation of individual basal forebrain (BF) cholinergic circuits is crucial for refining targets to treat comorbid chronic pain-like and depression-like behaviour. As the ventral pallidum (VP) in the BF regulates pain perception and emotions, we aim to address the role of VP-derived cholinergic circuits in hyperalgesia and depression-like behaviour in chronic pain mouse model. In male mice, VP cholinergic neurons innervate local non-cholinergic neurons and modulate downstream basolateral amygdala (BLA) neurons through nicotinic acetylcholine receptors. These cholinergic circuits are mobilized by pain-like stimuli and become hyperactive during persistent pain. Acute stimulation of VP cholinergic neurons and the VP-BLA cholinergic projection reduces pain threshold in naïve mice whereas inhibition of the circuits elevated pain threshold in pain-like states. Multi-day repetitive modulation of the VP-BLA cholinergic pathway regulates depression-like behaviour in persistent pain. Therefore, VP-derived cholinergic circuits are implicated in comorbid hyperalgesia and depression-like behaviour in chronic pain mouse model.
Collapse
Affiliation(s)
- Ya-Wei Ji
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Zi-Lin Shen
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xue Zhang
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Kairan Zhang
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Tao Jia
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Xiangying Xu
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Huizhen Geng
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Yu Han
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
| | - Cui Yin
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun-Li Cao
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| | - Chunyi Zhou
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| | - Cheng Xiao
- Jiangsu Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| |
Collapse
|
9
|
Karpin H, Vatine JJ, Bachar Kirshenboim Y, Markezana A, Weissman-Fogel I. Central Sensitization and Psychological State Distinguishing Complex Regional Pain Syndrome from Other Chronic Limb Pain Conditions: A Cluster Analysis Model. Biomedicines 2022; 11:89. [PMID: 36672597 PMCID: PMC9856064 DOI: 10.3390/biomedicines11010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Complex regional pain syndrome (CRPS) taxonomy has been updated with reported subtypes and is defined as primary pain alongside other chronic limb pain (CLP) conditions. We aimed at identifying CRPS clinical phenotypes that distinguish CRPS from other CLP conditions. Cluster analysis was carried out to classify 61 chronic CRPS and 31 CLP patients based on evoked pain (intensity of hyperalgesia and dynamic allodynia, allodynia area, and after-sensation) and psychological (depression, kinesiophobia, mental distress, and depersonalization) measures. Pro-inflammatory cytokine IL-6 and TNF-α serum levels were measured. Three cluster groups were created: ‘CRPS’ (78.7% CRPS; 6.5% CLP); ‘CLP’ (64.5% CLP; 4.9% CRPS), and ‘Mixed’ (16.4% CRPS; 29% CLP). The groups differed in all measures, predominantly in allodynia and hyperalgesia (p < 0.001, η² > 0.58). ‘CRPS’ demonstrated higher psychological and evoked pain measures vs. ‘CLP’. ‘Mixed’ exhibited similarities to ‘CRPS’ in psychological profile and to ‘CLP’ in evoked pain measures. The serum level of TNF-αwas higher in the ‘CRPS’ vs. ‘CLP’ (p < 0.001) groups. In conclusion, pain hypersensitivity reflecting nociplastic pain mechanisms and psychological state measures created different clinical phenotypes of CRPS and possible CRPS subtypes, which distinguishes them from other CLP conditions, with the pro-inflammatory TNF-α cytokine as an additional potential biomarker.
Collapse
Affiliation(s)
- Hana Karpin
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel
- Reuth Rehabilitation Hospital, Tel Aviv 6772829, Israel
| | - Jean-Jacques Vatine
- Reuth Rehabilitation Hospital, Tel Aviv 6772829, Israel
- Physical Medicine and Rehabilitation Department, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yishai Bachar Kirshenboim
- Reuth Rehabilitation Hospital, Tel Aviv 6772829, Israel
- Department of Occupational Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Aurelia Markezana
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Irit Weissman-Fogel
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
10
|
Jia T, Wang YD, Chen J, Zhang X, Cao JL, Xiao C, Zhou C. A nigro-subthalamo-parabrachial pathway modulates pain-like behaviors. Nat Commun 2022; 13:7756. [PMID: 36522327 PMCID: PMC9755217 DOI: 10.1038/s41467-022-35474-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The basal ganglia including the subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr) are involved in pain-related responses, but how they regulate pain processing remains unknown. Here, we identify a pathway, consisting of GABAergic neurons in the SNr (SNrGABA) and glutamatergic neurons in the STN (STNGlu) and the lateral parabrachial nucleus (LPBGlu), that modulates acute and persistent pain states in both male and female mice. The activity of STN neurons was enhanced in acute and persistent pain states. This enhancement was accompanied by hypoactivity in SNrGABA neurons and strengthening of the STN-LPB glutamatergic projection. Reversing the dysfunction in the SNrGABA-STNGlu-LPBGlu pathway attenuated activity of LPBGlu neurons and mitigated pain-like behaviors. Therefore, the SNrGABA-STNGlu-LPBGlu pathway regulates pathological pain and is a potential target for pain management.
Collapse
Affiliation(s)
- Tao Jia
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China
| | - Ying-Di Wang
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China
| | - Jing Chen
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China
| | - Xue Zhang
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China
| | - Jun-Li Cao
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China
| | - Cheng Xiao
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China
| | - Chunyi Zhou
- grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory in Anesthesiology, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, Jiangsu China
| |
Collapse
|