1
|
Sharma N, Kumari D, Panigrahi I, Khetarpal P. A systematic review of the monogenic causes of Non-Syndromic Hearing Loss (NSHL) and discussion of Current Diagnosis and Treatment options. Clin Genet 2023; 103:16-34. [PMID: 36089522 DOI: 10.1111/cge.14228] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022]
Abstract
Hearing impairment is one of the most widespread inheritable sensory disorder affecting at least 1 in every 1000 born. About two-third of hereditary hearing loss (HHL) disorders are non-syndromic. To provide comprehensive update of monogenic causes of non-syndromic hearing loss (NSHL), literature search has been carried out with appropriate keywords in the following databases-PubMed, Google Scholar, Cochrane library, and Science Direct. Out of 2214 papers, 271 papers were shortlisted after applying inclusion and exclusion criterion. Data extracted from selected papers include information about gene name, identified pathogenic variants, ethnicity of the patient, age of onset, gender, title, authors' name, and year of publication. Overall, pathogenic variants in 98 different genes have been associated with NSHL. These genes have important role to play during early embryonic development in ear structure formation and hearing development. Here, we also review briefly the recent information about diagnosis and treatment approaches. Understanding pathogenic genetic variants are helpful in the management of affected and may offer targeted therapies in future.
Collapse
Affiliation(s)
- Nandita Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Divya Kumari
- Department of Pediatrics Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Inusha Panigrahi
- Department of Pediatrics Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Preeti Khetarpal
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
2
|
Eshraghi AA, Polineni SP, Davies C, Shahal D, Mittal J, Al-Zaghal Z, Sinha R, Jindal U, Mittal R. Genotype-Phenotype Correlation for Predicting Cochlear Implant Outcome: Current Challenges and Opportunities. Front Genet 2020; 11:678. [PMID: 32765579 PMCID: PMC7381205 DOI: 10.3389/fgene.2020.00678] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
The use and utility of cochlear implantation has rapidly increased in recent years as technological advances in the field have expanded both the efficacy and eligible patient population for implantation. This review aims to serve as a general overview of the most common hearing disorders that have favorable auditory outcomes with cochlear implants (CI). Hearing loss in children caused by congenital cytomegalovirus infection, syndromic conditions including Pendred Syndrome, and non-syndromic genetic conditions such as hearing impairment associated with GJB2 mutations have shown to be successfully managed by CI. Furthermore, cochlear implantation provides the auditory rehabilitation for the most common etiology of hearing loss in adults and age-related hearing loss (ARHL) or presbycusis. However, in some cases, cochlear implantation have been associated with some challenges. Regarding implantation in children, studies have shown that sometimes parents seem to have unrealistic expectations regarding the ability of CI to provide auditory rehabilitation and speech improvement. Given the evidence revealing the beneficial effects of early intervention via CI in individuals with hearing disorders especially hearing loss due to genetic etiology, early auditory and genetic screening efforts may yield better clinical outcomes. There is a need to better understand genotype-phenotype correlations and CI outcome, so that effective genetic counseling and successful treatment strategies can be developed at the appropriate time for hearing impaired individuals.
Collapse
Affiliation(s)
- Adrien A. Eshraghi
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
- Department of Neurological Surgery, Miller School of Medicine, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Sai P. Polineni
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Camron Davies
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - David Shahal
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Jeenu Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Zaid Al-Zaghal
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Rahul Sinha
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Urmi Jindal
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| | - Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami Hearing Research Laboratory, Miami, FL, United States
| |
Collapse
|