1
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK. The conceivable role of prolactin hormone in Parkinson disease: The same goal but with different ways. Ageing Res Rev 2023; 91:102075. [PMID: 37714384 DOI: 10.1016/j.arr.2023.102075] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Parkinson disease (PD) is a progressive neurodegenerative disease (NDD) of the brain. It has been reported that prolactin (PRL) hormone plays a differential effect in PD, may be increasing, reduced or unaffected. PRL level is dysregulated in different neurodegenerative disorders including PD. Preclinical and clinical studies pointed out that PRL may has a neuroprotective against PD neuropathology . Though, the mechanistic role of PRL in PD is not fully elucidated. Therefore, the objective of the present review was to clarify the potential role and mechanistic pathway of PRL in PD neuropathology. The present review highlighted that PRL appears to have a neuroprotective effect against PD neuropathology by inhibiting the expression of pro-inflammatory signaling pathways, antioxidant effects and by inhibiting neuroinflammation. Thus, preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Haydar M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
2
|
Monoamine Neurotransmitters Control Basic Emotions and Affect Major Depressive Disorders. Pharmaceuticals (Basel) 2022; 15:ph15101203. [PMID: 36297314 PMCID: PMC9611768 DOI: 10.3390/ph15101203] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Major depressive disorder (MDD) is a common and complex mental disorder, that adversely impacts an individual’s quality of life, but its diagnosis and treatment are not accurately executed and a symptom-based approach is utilized in most cases, due to the lack of precise knowledge regarding the pathophysiology. So far, the first-line treatments are still based on monoamine neurotransmitters. Even though there is a lot of progress in this field, the mechanisms seem to get more and more confusing, and the treatment is also getting more and more controversial. In this study, we try to review the broad advances of monoamine neurotransmitters in the field of MDD, and update its effects in many advanced neuroscience studies. We still propose the monoamine hypothesis but paid special attention to their effects on the new pathways for MDD, such as inflammation, oxidative stress, neurotrophins, and neurogenesis, especially in the glial cells, which have recently been found to play an important role in many neurodegenerative disorders, including MDD. In addition, we will extend the monoamine hypothesis to basic emotions; as suggested in our previous reports, the three monoamine neurotransmitters play different roles in emotions: dopamine—joy, norepinephrine—fear (anger), serotonins—disgust (sadness). Above all, this paper tries to give a full picture of the relationship between the MDD and the monoamine neurotransmitters such as DA, NE, and 5-HT, as well as their contributions to the Three Primary Color Model of Basic Emotions (joy, fear, and disgust). This is done by explaining the contribution of the monoamine from many sides for MDD, such the digestive tract, astrocytes, microglial, and others, and very briefly addressing the potential of monoamine neurotransmitters as a therapeutic approach for MDD patients and also the reasons for its limited clinical efficacy, side effects, and delayed onset of action. We hope this review might offer new pharmacological management of MDD.
Collapse
|
3
|
Al-Kuraishy HM, Al-Gareeb AI, Butnariu M, Batiha GES. The crucial role of prolactin-lactogenic hormone in Covid-19. Mol Cell Biochem 2022; 477:1381-1392. [PMID: 35147901 PMCID: PMC8831165 DOI: 10.1007/s11010-022-04381-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Prolactin (PRL) is a peptide hormone secreted from anterior pituitary involved in milk production in the females and regulation of sex drive in both sexes. PRL has pro-inflammatory and anti-inflammatory functions. High PRL serum level or hyperprolactinemia is associated with different viral infections. In coronavirus disease 2019 (Covid-19), which caused by positive-sense single-strand RNA virus known as severe acute respiratory distress syndrome coronavirus type 2 (SARS-CoV-2), PRL serum level is increased. PRL in Covid-19 may exacerbate the underlying inflammatory status by induction release of pro-inflammatory cytokines. However, PRL through its anti-inflammatory effects may reduce the hyperinflammatory status in Covid-19. The underlying mechanism of increasing PRL in Covid-19 is poorly understood. Therefore, in this review we try to find the potential anti-inflammatory or pro-inflammatory role of PRL in Covid-19. As well, this review was aimed to discuss the underlying causes and mechanisms for Covid-19-induced hyperprolactinemia.
Collapse
Affiliation(s)
| | - Ali I Al-Gareeb
- College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" From Timisoara, Calea Aradului 119, 300645, Timis, Romania.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
4
|
Rahman T, Sahrmann JM, Olsen MA, Nickel KB, Miller JP, Ma C, Grucza RA. Risk of Breast Cancer With Prolactin Elevating Antipsychotic Drugs: An Observational Study of US Women (Ages 18-64 Years). J Clin Psychopharmacol 2022; 42:7-16. [PMID: 34864772 PMCID: PMC8688205 DOI: 10.1097/jcp.0000000000001513] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE/BACKGROUND Antipsychotic drugs are well established to alter circulating prolactin levels by blocking dopamine D2 receptors in the pituitary. Prolactin activates many genes important in the development of breast cancer. Prior studies have found an association with antipsychotic use and risk of breast cancer. METHODS/PROCEDURES The IBM MarketScan Commercial and Medicaid Databases were used to establish a large, observational cohort of women taking antipsychotics drugs compared with anticonvulsants or lithium. A new user design was used that required 12 months of insurance enrollment before the first antipsychotic or anticonvulsant/lithium prescription. Invasive breast cancer was identified using diagnostic codes. Multivariable Cox proportional hazards models were used to evaluate the risk of breast cancer with antipsychotic drug exposure controlling for age and other risk factors. FINDINGS/RESULTS A total of 914 cases (0.16%) of invasive breast cancer were identified among 540,737 women. Exposure to all antipsychotics was independently associated with a 35% increased risk of breast cancer (aHR [adjusted hazard ratio], 1.35; 95% confidence interval, 1.14-1.61). Category 1 drugs (high prolactin) were associated with a 62% increased risk (aHR, 1.62; 95% CI, 1.30-2.03), category 2 drugs a 54% increased risk (aHR, 1.54; 95% CI, 1.19-1.99), and category 3 drugs were not associated with breast cancer risk. IMPLICATIONS/CONCLUSIONS In the largest study of antipsychotics taken by US women, a higher risk between antipsychotic drug use and increased risk for breast cancer was observed, with a differential higher association with antipsychotic categories that elevate prolactin. Our study confirms other recent observational studies of increased breast cancer risk with antipsychotics that elevate prolactin.
Collapse
Affiliation(s)
- Tahir Rahman
- From the Washington University School of Medicine
| | | | - Margaret A Olsen
- Divisions of Infectious Diseases and Public Health Sciences, Departments of Medicine and Surgery
| | | | | | - Cynthia Ma
- Department of Medicine/Siteman Cancer Center, Washington University in St Louis, School of Medicine
| | - Richard A Grucza
- Department of Family and Community Medicine and Department of Health Outcomes Research, St Louis University School of Medicine, St Louis, MO
| |
Collapse
|
5
|
González-Rodríguez A, Guàrdia A, Monreal JA. Peri- and Post-Menopausal Women with Schizophrenia and Related Disorders Are a Population with Specific Needs: A Narrative Review of Current Theories. J Pers Med 2021; 11:jpm11090849. [PMID: 34575626 PMCID: PMC8465365 DOI: 10.3390/jpm11090849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022] Open
Abstract
Background: While gender differences in antipsychotic response have been recognized, the potential role of menopause in changing drug efficacy and clinical outcome in schizophrenia related disorders has been understudied. We aimed to review the relevant literature to test whether optimizing menopausal and post-menopausal treatment and addressing specific health needs of this stage in life will improve outcome. Methods: Non-systematic narrative review using the PubMed database (1900–July 2021) focusing on randomized controlled trial results addressing our question. Forty-nine studies met our criteria. Results: Premenopausal women show significantly better antipsychotic response than postmenopausal women. Hormone replacement therapies (HRT) should be used in postmenopausal women with schizophrenia with caution. Raloxifene, combined with antipsychotics, is effective for psychotic and cognitive symptoms in postmenopausal women with schizophrenia and related disorders. Medical comorbidities increase after menopause, but the influence of comorbidities on clinical outcomes has been poorly investigated. Preventive strategies include weighing risks and benefits of treatment, preventing medical comorbidities, and enhancing psychosocial support. Ideal treatment settings for this population warrant investigation. Conclusions: Antipsychotic dose adjustment at menopause is recommended for schizophrenia. Raloxifene may play an important role in permitting dose reduction and lessening adverse effects. Prevention of comorbidities will help to reduce the mortality rate.
Collapse
Affiliation(s)
- Alexandre González-Rodríguez
- Department of Mental Health, Mutua Terrassa University Hospital, University of Barcelona, 08221 Terrassa, Spain; (A.G.); (J.A.M.)
- Correspondence:
| | - Armand Guàrdia
- Department of Mental Health, Mutua Terrassa University Hospital, University of Barcelona, 08221 Terrassa, Spain; (A.G.); (J.A.M.)
| | - José Antonio Monreal
- Department of Mental Health, Mutua Terrassa University Hospital, University of Barcelona, 08221 Terrassa, Spain; (A.G.); (J.A.M.)
- Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), 08211 Terrassa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 08221 Terrassa, Spain
| |
Collapse
|
6
|
Zhuo C, Xu Y, Wang H, Fang T, Chen J, Zhou C, Li Q, Liu J, Xu S, Yao C, Yang W, Yang A, Li B, Chen Y, Tian H, Lin C. Safety and Efficacy of High-Dose Vitamin B6 as an Adjunctive Treatment for Antipsychotic-Induced Hyperprolactinemia in Male Patients With Treatment-Resistant Schizophrenia. Front Psychiatry 2021; 12:681418. [PMID: 34512411 PMCID: PMC8426548 DOI: 10.3389/fpsyt.2021.681418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate the safety and efficacy of high-dose vitamin B6 (vB6) as an adjunct treatment for antipsychotic-induced hyperprolactinemia (AIHP) in male patients with treatment-resistant schizophrenia (TRS). In this randomized double-blinded controlled study, patients were randomized (1:1) into a control group given aripiprazole (ARI; 10 mg/day; n = 100) or an intervention group given vB6 (300 mg/12 h for 16 weeks; n = 100). Prolactin levels, psychotic symptoms [Positive and Negative Syndrome Scale (PANSS)], cognitive function [MATRICS Consensus Cognitive Battery (MCCB)], liver function, kidney function, growth hormone level, micronutrient levels, blood lipids, and adverse secondary effects (ASEs)[Treatment Emergent Symptom Scale (TESS) and Barnes-Akathisia scale] were monitored. After a 16-week treatment period, the vB6 group showed a 68.1% reduction in serum prolactin levels (from 95.52 ± 6.30 μg/L to 30.43 ± 18.65 μg/L) while the ARI group showed only a 37.4% reduction (from 89.07 ± 3.59 μg/L to 55.78 ± 7.39 μg/L). During weeks 1-4, both treatments reduced prolactin similarly. Subsequently, the ARI effect plateaued, while the vB6 effect remained robust. The vB6 group showed better alleviation of psychotic symptoms and cognitive impairment. No serious ASEs were observed; ASEs were more frequent in the ARI group. AIHP reduction efficacy of vB6 was associated with baseline prolactin and triglyceride levels, total vB6 dosage, and education level. In conclusion, compared with the ARI group, TRS patients given vB6 showed better attenuation of AIHP, lower ASE scores, and greater improvements in clinical symptoms and cognitive impairments. These results support further consideration of vB6 as a putative treatment for AIHP. Trial Registration: ChiCTR1800014755.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Multiple Organ Damages of Major Psychoses (MODMP_Lab), Tianjin Fourth Center Hospital, The Fourth Central Hospital Affiliated With Nankai University, The Fourth Central Hospital Affiliated to Tianjin Medical University, Tianjin, China.,Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, The Fourth Central Hospital Affiliated With Nankai University, The Fourth Central Hospital Affiliated to Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Mental Disorder Therapy Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Haibo Wang
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
| | - Tao Fang
- Key Laboratory of Multiple Organ Damages of Major Psychoses (MODMP_Lab), Tianjin Fourth Center Hospital, The Fourth Central Hospital Affiliated With Nankai University, The Fourth Central Hospital Affiliated to Tianjin Medical University, Tianjin, China.,Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, The Fourth Central Hospital Affiliated With Nankai University, The Fourth Central Hospital Affiliated to Tianjin Medical University, Tianjin, China
| | - Jiayue Chen
- Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, The Fourth Central Hospital Affiliated With Nankai University, The Fourth Central Hospital Affiliated to Tianjin Medical University, Tianjin, China.,Laboratory of Neuro-Imaging and Comorbidity (PNGC_Lab), Tianjin Anding Hospital Affiliated to Nankai University, Tianjin Medical University, Tianjin, China
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Qianchen Li
- Department of Pharmacology, The First Hospital Affiliated to Hebei Medical University, Shijiazhuang, China
| | - Jie Liu
- Laboratory of Neuro-Imaging and Comorbidity (PNGC_Lab), Tianjin Anding Hospital Affiliated to Nankai University, Tianjin Medical University, Tianjin, China
| | - Shuli Xu
- Laboratory of Neuro-Imaging and Comorbidity (PNGC_Lab), Tianjin Anding Hospital Affiliated to Nankai University, Tianjin Medical University, Tianjin, China
| | - Cong Yao
- Laboratory of Neuro-Imaging and Comorbidity (PNGC_Lab), Tianjin Anding Hospital Affiliated to Nankai University, Tianjin Medical University, Tianjin, China
| | - Weiliang Yang
- Laboratory of Neuro-Imaging and Comorbidity (PNGC_Lab), Tianjin Anding Hospital Affiliated to Nankai University, Tianjin Medical University, Tianjin, China
| | - Anqu Yang
- Department of Treatment Resistant Schizophrenia, Tianjin Kangtai Hospital, Tianjin, China
| | - Bo Li
- Department of Treatment Resistant Schizophrenia, Tianjin Kangtai Hospital, Tianjin, China
| | - Yuhui Chen
- Department of Treatment Resistant Schizophrenia, Tianjin Kangtai Hospital, Tianjin, China
| | - Hongjun Tian
- Key Laboratory of Multiple Organ Damages of Major Psychoses (MODMP_Lab), Tianjin Fourth Center Hospital, The Fourth Central Hospital Affiliated With Nankai University, The Fourth Central Hospital Affiliated to Tianjin Medical University, Tianjin, China.,Key Laboratory of Real Time Brain Circuit Tracing in Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital, The Fourth Central Hospital Affiliated With Nankai University, The Fourth Central Hospital Affiliated to Tianjin Medical University, Tianjin, China
| | - Chongguang Lin
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| |
Collapse
|