1
|
Lu Y, Chen A, Liao M, Tao R, Wen S, Zhang S, Li C. Development of a microRNA-Based age estimation model using whole-blood microRNA expression profiling. Noncoding RNA Res 2025; 12:81-91. [PMID: 40144340 PMCID: PMC11938159 DOI: 10.1016/j.ncrna.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Age estimation is a critical aspect of human identification. Traditional methods, reliant on morphological examinations, are often suitable for living subjects. However, there are relatively few studies on age estimation based on biological samples, such as blood. Recent advancements have concentrated on DNA methylation for forensic age prediction. However, to explore further possibilities, this study investigated microRNAs (miRNAs) as alternative molecular markers for age estimation. Peripheral blood samples from 127 healthy individuals were analyzed for miRNA expression using small RNA sequencing. Lasso regression selected 103 candidate miRNAs, and Shapley additive explanations (SHAP) analysis identified 38 key miRNAs significant for age prediction. Five machine learning models were developed, with the elastic net model achieving the best performance (MAE of 4.08 years) on the testing set, surpassing current miRNA age estimation results. Additionally, we observed significant changes in the expression levels of miRNAs in healthy individuals aged 48-52 years. This study demonstrated the potential of blood miRNA biomarkers in age prediction and provides a set of miRNA markers for developing more accurate age prediction methods.
Collapse
Affiliation(s)
- Yanfang Lu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030009, China
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Anqi Chen
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Mengxiao Liao
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Ruiyang Tao
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, 200063, China
| | - Shubo Wen
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Suhua Zhang
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
| | - Chengtao Li
- Institute of Forensic Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, 200063, China
| |
Collapse
|
2
|
Zhai F, Yun B, Ming J, Yu T, Li B, Liu X, Wang X, Chen ZH, Song C, Zhao M, Li W, Liu Z, Liang A, Li J, Zhang F. Non-Invasive Diagnosis of Early Colorectal Cancerization via Amplified Sensing of MicroRNA-21 in NIR-II Window. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501378. [PMID: 40123304 DOI: 10.1002/adma.202501378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Accurate, sensitive, and in situ visualization of aberrant expression level of low-abundant biomolecules is crucial for early colorectal cancer (CRC) detection ahead of tumor morphology change. However, the clinical used colonoscopy and biopsy methods are invasive and lack of sensitivity at early-stage of cancerization. Here, an amplified sensing strategy is developed in the second near-infrared long-wavelength subregion (NIR-II-L, 1500-1900 nm) by integrating DNAzyme-triggered signal amplification technology and lanthanide-dye hybrid system. In the early-stage of CRC, the overexpressed biomarker microRNA-21 initiates the NIR-II-L luminescence ratiometric signal amplification of the CRCsensor. The high sensitivity with a limit of detection (LOD) of 1.26 pm allows non-invasive visualization of orthotopic colorectal cancerization via rectal administration, which achieves early and accurate in situ diagnosis at 2 weeks ahead of the in vitro histological results. This innovative approach offers a promising tool for early diagnosis and long-term monitoring of carcinogenesis progression, with potential applications in other cancer-related biomarkers.
Collapse
Affiliation(s)
- Fuheng Zhai
- Department of Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Baofeng Yun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Tianyu Yu
- Department of Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Benhao Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Xiao Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Xusheng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Zi-Han Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Changfeng Song
- Department of Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Wenlin Li
- Department of Cell Biology, Naval Medical University, Shanghai, 200433, P. R. China
| | - Zhebin Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200433, P. R. China
| | - Aibin Liang
- Department of Hematology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P. R. China
| | - Jiyu Li
- Department of Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
- Department of Oncology, Pudong Hospital, Fudan University, Shanghai, 201399, P. R. China
| | - Fan Zhang
- Department of Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
- Department of Hematology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P. R. China
| |
Collapse
|
3
|
Ramírez W, Pillajo V, Ramírez E, Manzano I, Meza D. Exploring Components, Sensors, and Techniques for Cancer Detection via eNose Technology: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:7868. [PMID: 39686404 DOI: 10.3390/s24237868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
This paper offers a systematic review of advancements in electronic nose technologies for early cancer detection with a particular focus on the detection and analysis of volatile organic compounds present in biomarkers such as breath, urine, saliva, and blood. Our objective is to comprehensively explore how these biomarkers can serve as early indicators of various cancers, enhancing diagnostic precision and reducing invasiveness. A total of 120 studies published between 2018 and 2023 were examined through systematic mapping and literature review methodologies, employing the PICOS (Population, Intervention, Comparison, Outcome, and Study design) methodology to guide the analysis. Of these studies, 65.83% were ranked in Q1 journals, illustrating the scientific rigor of the included research. Our review synthesizes both technical and clinical perspectives, evaluating sensor-based devices such as gas chromatography-mass spectrometry and selected ion flow tube-mass spectrometry with reported incidences of 30 and 8 studies, respectively. Key analytical techniques including Support Vector Machine, Principal Component Analysis, and Artificial Neural Networks were identified as the most prevalent, appearing in 22, 24, and 13 studies, respectively. While substantial improvements in detection accuracy and sensitivity are noted, significant challenges persist in sensor optimization, data integration, and adaptation into clinical settings. This comprehensive analysis bridges existing research gaps and lays a foundation for the development of non-invasive diagnostic devices. By refining detection technologies and advancing clinical applications, this work has the potential to transform cancer diagnostics, offering higher precision and reduced reliance on invasive procedures. Our aim is to provide a robust knowledge base for researchers at all experience levels, presenting insights on sensor capabilities, metrics, analytical methodologies, and the transformative impact of emerging electronic nose technologies in clinical practice.
Collapse
Affiliation(s)
- Washington Ramírez
- Departamento de Ciencias de la Computación, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí 171104, Ecuador
| | - Verónica Pillajo
- Departamento de Informática, Universidad Politécnica Salesiana, Quito 170146, Ecuador
| | - Eileen Ramírez
- Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador
| | - Ibeth Manzano
- Departamento de Ciencias de la Computación, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí 171104, Ecuador
| | - Doris Meza
- Facultad de Ciencias Económicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| |
Collapse
|
4
|
Liu Y, Duan Y, Bai T, Kong D. Hypermethylation of the sodium channel beta subunit gene promoter is associated with colorectal cancer. Hereditas 2024; 161:39. [PMID: 39415304 PMCID: PMC11484387 DOI: 10.1186/s41065-024-00340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
AIMS To better understand the role of sodium channel beta subunit (SCNN1B) in the initiation and progression of colorectal cancer (CRC) and to identify potential biomarkers for the early detection and prognosis of CRC. METHODS A total of 74 pairs of CRC tissues and their adjacent normal tissues were collected between October 2016 and November 2017. The methylation levels of the SCNN1B promoter region in CRC tissues and their adjacent normal tissues were investigated by pyrosequencing. The expression of both SCNN1B mRNA and protein were detected by RT‒qPCR and immunohistochemistry, respectively. RESULTS The results showed that the methylation levels of the SCNN1B promoter region were significantly higher in CRC tissues than in adjacent normal tissues. The expression levels of SCNN1B mRNA and protein were significantly lower in the CRC tissues than in their adjacent normal tissues. Moreover, Pearson's correlation analysis showed that the methylation levels of the SCNN1B promoter were negatively correlated with the SCNN1B mRNA levels in CRC tissues. In addition, the high methylation levels and low mRNA expression of SCNN1B showed a significant association with advanced tumour stage, increased risk of lymph node metastasis and poor prognosis of CRC patients. CONCLUSION This study suggested that the decreased expression of SCNN1B due to its promoter hypermethylation may play an important role in the progression and prognosis of CRC, and the methylation levels of the SCNN1B promoter may serve as an effective molecular marker for predicting the progression and prognosis of CRC.
Collapse
Affiliation(s)
- Yabin Liu
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, P.R. China
| | - Ya Duan
- Department of Obstetrics, Hebei General Hospital, Shijiazhuang, Hebei, 050011, P.R. China
| | - Tianliang Bai
- Department of Gastrointestinal Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, P.R. China
| | - Dexian Kong
- Department of Endocrinology, Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, Hebei, 050011, P.R. China.
| |
Collapse
|
5
|
Yuan M, Long Q, Sun X. OCTA-based research on changes of retinal microcirculation in digestive tract malignancy. Photodiagnosis Photodyn Ther 2024; 49:104270. [PMID: 39002834 DOI: 10.1016/j.pdpdt.2024.104270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE This cross-sectional study measured retinal vessel density (VD) in patients with digestive tract malignancy by optical coherence tomography angiography (OCTA), and compared them with healthy controls to explore the retinal microcirculation changes in patients with digestive tract malignancy. METHODS 106 eligible participants were divided into three groups: gastric cancer (GC) group (36 individuals), colorectal cancer (CRC) group (34 individuals), and healthy control group (36 individuals). Angio 6 × 6 512 × 512 R4 and ONH Angio 6 × 6 512 × 512 R4 modes were performed to collect retinal vessel density data centered on fovea and papillary, respectively. The retina was automatically segmented into different layers (superficial vascular plexus (SVP), the inner retinal layer, radial peripapillary capillary plexus (RPCP), deep vascular plexus (DVP)) and areas to analyze. RESULTS At the optic nerve head (ONH) region, the VD of the inner retinal layer increased in both GC and CRC groups in all quadrants and areas. In the papillary area, VD in the inner retinal layer, SVP, and RPCP increased in the GC and CRC groups. In the parapapillary area, VD in the inner retinal layer increased in the GC and the CRC groups. Significant increase in the global VD were found in the GC group of the RPCP and SVP. Regarding the macular region, no statistical differences were observed in each layer. CONCLUSIONS The study suggested that retinal vessel density changed in patients with digestive tract malignancy, especially in the inner retinal layer of the ONH region, revealing the potential relevance of the relation between gastrointestinal cancer and retinal microcirculation.
Collapse
Affiliation(s)
- Mingzhu Yuan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qi Long
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
6
|
Yang Y, Wang J, Lin J, Wu C. Application and development of noninvasive biomarkers for colorectal cancer screening. Int J Surg 2024; 110:1325-1326. [PMID: 38016141 PMCID: PMC10871624 DOI: 10.1097/js9.0000000000000933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Affiliation(s)
| | | | | | - Chunlin Wu
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China
| |
Collapse
|
7
|
Ren J, Miao X. A commentary on 'Application and development of noninvasive biomarkers for colorectal cancer screening: a systematic review'. Int J Surg 2023; 109:3211-3212. [PMID: 37402287 PMCID: PMC10583895 DOI: 10.1097/js9.0000000000000587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Affiliation(s)
| | - Xinpu Miao
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Hainan, People’s Republic of China
| |
Collapse
|