1
|
Hernan G, Ingale N, Somayaji S, Veerubhotla A. Virtual Reality-Based Interventions to Improve Balance in Patients with Traumatic Brain Injury: A Scoping Review. Brain Sci 2024; 14:429. [PMID: 38790408 PMCID: PMC11119161 DOI: 10.3390/brainsci14050429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Virtual reality (VR)-based interventions to improve balance and mobility are gaining increasing traction across patient populations. VR-based interventions are believed to be more enjoyable and engaging for patients with traumatic brain injury. This scoping review aims to summarize existing studies from the literature that used VR to improve balance and mobility and determine the gap in VR-based balance literature specific to individuals with traumatic brain injury. METHODS Two authors independently searched the literature using the search terms "Virtual Reality Traumatic Brain Injury Lower Limb", "Virtual Reality Traumatic Brain Injury Balance", and "Virtual Reality Traumatic Brain Injury Gait". RESULTS A total of seventeen studies, specifically, three randomized controlled trials, one one-arm experimental study, two retrospective studies, two case studies, one feasibility/usability study, one cohort study, and seven diagnostic (validation) studies, met the inclusion criteria for this review. The methodological quality of the studies evaluated using the PEDro scale was fair. DISCUSSION Future studies should focus on large-scale clinical trials using validated technology to determine its effectiveness and dose-response characteristics. Additionally, standard assessment tools need to be selected and utilized across interventional studies aimed at improving balance and mobility to help compare results between studies.
Collapse
Affiliation(s)
| | | | | | - Akhila Veerubhotla
- Department of Rehabilitation Medicine, Grossman School of Medicine, New York University, New York, NY 10016, USA; (G.H.); (N.I.); (S.S.)
| |
Collapse
|
2
|
Walter AE, Wilkes JR, Scaramuzzo M, Johns-Bostick T, Lynch S, Sebastianelli W, Seidenberg P, Bream T, Slobounov SM. Head acceleration event exposure and cognitive and functional outcomes: a comparison of multiple football seasons. Res Sports Med 2024; 32:122-131. [PMID: 35708219 DOI: 10.1080/15438627.2022.2090249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/11/2022] [Indexed: 10/18/2022]
Abstract
Athletes in contact sports are exposed to repetitive impacts as an inherent part of sport. There is concern over the accumulative effect; however, much is still unknown regarding their short-term effects. This study investigated impact accumulation and outcomes over three seasons (2015, 2017, 2019) in NCAA Football Bowl Subdivision players. Impacts were recorded using helmet accelerometers, and virtual reality testing (VR) was done across the season. Incidence rates for impacts (total; ≥25 G to <80 G; ≥80 G) all significantly differed by season (p < 0.05). VR scores changed across the seasons, specifically significant decreases in spatial memory (p < 0.05) in 2015, significant changes in balance and spatial memory (p < 0.05) in 2017, and no significant changes in 2019. Linear regressions predicting VR change score by impact incidence rate were nonsignificant. Monitoring exposure to impacts and changes in outcomes is useful; however, results are fluid, and many factors could indirectly have protective effects on athletes.
Collapse
Affiliation(s)
- Alexa E Walter
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| | - James R Wilkes
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Madeleine Scaramuzzo
- Intercollegiate Athletics, The Pennsylvania State University, University Park, PA, USA
- Intercollegiate Athletics, Southeastern Louisiana University, Hammond, LA, USA
| | - Tesa Johns-Bostick
- Intercollegiate Athletics, The Pennsylvania State University, University Park, PA, USA
| | - Scott Lynch
- Department of Orthopaedics, Penn State Health, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Wayne Sebastianelli
- Department of Orthopaedics and Rehabilitation, the Pennsylvania State University, Penn State College of Medicine, State College, PA, USA
| | - Peter Seidenberg
- Department of Orthopaedics and Rehabilitation and Family and Community Medicine, Penn State Health, Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Family Medicine, Louisiana State University Health School of Medicine, Shreveport, LA, USA
| | - Tim Bream
- Intercollegiate Athletics, The Pennsylvania State University, University Park, PA, USA
- SAFR Sport Technologies, Chester Springs, PA, USA
| | - Semyon M Slobounov
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Wilkerson GB, Lansey JC, Noblett CN, Sarris CE. Test-Retest Reliability of Immersive Virtual Reality Measures of Perceptual-Motor Performance. Percept Mot Skills 2023; 130:2484-2504. [PMID: 37776022 DOI: 10.1177/00315125231205322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The duration, accuracy, and consistency of responses to various types of stimuli are widely accepted as indirect indicators of the efficiency of brain information processing, but current clinical tests appear to lack sufficient sensitivity to detect subtle impairments. Immersive virtual reality (VR) offers a new means to acquire measures of perceptual-motor responses to moving visual stimuli that require rapid conflict resolution, but their test-retest reliability has not yet been demonstrated. Repeated measures. We analyzed data from 19 healthy young adults who performed a 40-trial VR test on three consecutive days. We focused on response time (RT) and perceptual latency (PL) for eye, neck, arm, and whole-body step displacements involved in executing a reaching/lunging movement in a right or left direction toward a peripherally located virtual target. Measures of RT and PL included a 40-trial mean, an intra-individual variability (IIV) value, and a rate correct score (RCS) that incorporated both response duration and accuracy. Most mean and IIV values for PL and RT demonstrated a positive distributional skew that was substantially reduced by natural logarithm transformation. While a learning effect was evident between sessions 1 and 2 for 7 of 8 mean PL and RT measures, 3-session intraclass correlation coefficient (ICC) values were moderate to excellent for 15 of 16 transformed PL and RT measures (range: .618 to .922). The composite RCS metric did not require transformation for either PL or RT, whose respective 3-session ICC values were .877 and .851. This moderate to excellent test-retest reliability for various VR measures of perceptual-motor function, combined with evidence of their validity from both past and future research, suggest that these measures can advance clinical detection of impaired brain processing and longitudinal assessments of potentially modifiable performance deficiencies.
Collapse
Affiliation(s)
- Gary B Wilkerson
- Graduate Athletic Training Program, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | | | - Courtney N Noblett
- Graduate Athletic Training Program, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Caroline E Sarris
- Graduate Athletic Training Program, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| |
Collapse
|
4
|
Dunne LAM, Cole MH, Cormack SJ, Howell DR, Johnston RD. Validity and Reliability of Methods to Assess Movement Deficiencies Following Concussion: A COSMIN Systematic Review. SPORTS MEDICINE - OPEN 2023; 9:76. [PMID: 37578611 PMCID: PMC10425315 DOI: 10.1186/s40798-023-00625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND There is an increased risk of subsequent concussion and musculoskeletal injury upon return to play following a sports-related concussion. Whilst there are numerous assessments available for clinicians for diagnosis and during return to play following concussion, many may lack the ability to detect these subclinical changes in function. Currently, there is no consensus or collated sources on the reliability, validity and feasibility of these assessments, which makes it difficult for clinicians and practitioners to select the most appropriate assessment for their needs. OBJECTIVES This systematic review aims to (1) consolidate the reliability and validity of motor function assessments across the time course of concussion management and (2) summarise their feasibility for clinicians and other end-users. METHODS A systematic search of five databases was conducted. Eligible studies were: (1) original research; (2) full-text English language; (3) peer-reviewed with level III evidence or higher; (4) assessed the validity of lower-limb motor assessments used to diagnose or determine readiness for athletes or military personnel who had sustained a concussion or; (5) assessed the test-retest reliability of lower-limb motor assessments used for concussion management amongst healthy athletes. Acceptable lower-limb motor assessments were dichotomised into instrumented and non-instrumented and then classified into static (stable around a fixed point), dynamic (movement around a fixed point), gait, and other categories. Each study was assessed using the COSMIN checklist to establish methodological and measurement quality. RESULTS A total of 1270 records were identified, with 637 duplicates removed. Titles and abstracts of 633 records were analysed, with 158 being retained for full-text review. A total of 67 records were included in this review; 37 records assessed reliability, and 35 records assessed the validity of lower-limb motor assessments. There were 42 different assessments included in the review, with 43% being non-instrumented, subjective assessments. Consistent evidence supported the use of instrumented assessments over non-instrumented, with gait-based assessments demonstrating sufficient reliability and validity compared to static or dynamic assessments. CONCLUSION These findings suggest that instrumented, gait-based assessments should be prioritised over static or dynamic balance assessments. The use of laboratory equipment (i.e. 3D motion capture, pressure sensitive walkways) on average exhibited sufficient reliability and validity, yet demonstrate poor feasibility. Further high-quality studies evaluating the reliability and validity of more readily available devices (i.e. inertial measurement units) are needed to fill the gap in current concussion management protocols. Practitioners can use this resource to understand the accuracy and precision of the assessments they have at their disposal to make informed decisions regarding the management of concussion. TRAIL REGISTRATION This systematic review was registered on PROSPERO (reg no. CRD42021256298).
Collapse
Affiliation(s)
- Laura A M Dunne
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia.
- SPRINT Research Centre, Faculty of Health Sciences, Australian Catholic University, Brisbane, Australia.
| | - Michael H Cole
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- Healthy Brain and Mind Research Centre, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Stuart J Cormack
- SPRINT Research Centre, Faculty of Health Sciences, Australian Catholic University, Brisbane, Australia
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, Australia
| | - David R Howell
- Sports Medicine Center, Children's Hospital Colorado, Aurora, CO, USA
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rich D Johnston
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Australia
- SPRINT Research Centre, Faculty of Health Sciences, Australian Catholic University, Brisbane, Australia
- Carnegie Applied Rugby Research Centre, School of Sport, Leeds Beckett University, Leeds, UK
| |
Collapse
|
5
|
Wilkerson GB, Colston MA, Acocello SN, Hogg JA, Carlson LM. Subtle impairments of perceptual-motor function and well-being are detectable among military cadets and college athletes with self-reported history of concussion. Front Sports Act Living 2023; 5:1046572. [PMID: 36761780 PMCID: PMC9905443 DOI: 10.3389/fspor.2023.1046572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction A lack of obvious long-term effects of concussion on standard clinical measures of behavioral performance capabilities does not preclude the existence of subtle neural processing impairments that appear to be linked to elevated risk for subsequent concussion occurrence, and which may be associated with greater susceptibility to progressive neurodegenerative processes. The purpose of this observational cohort study was to assess virtual reality motor response variability and survey responses as possible indicators of suboptimal brain function among military cadets and college athletes with self-reported history of concussion (HxC). Methods The cohort comprised 75 college students (20.7 ± 2.1 years): 39 Reserve Officer Training Corp (ROTC) military cadets (10 female), 16 football players, and 20 wrestlers; HxC self-reported by 20 (29.2 ± 27.1 months prior, range: 3-96). A virtual reality (VR) test involving 40 lunging/reaching responses to horizontally moving dots (filled/congruent: same direction; open/incongruent: opposite direction) was administered, along with the Sport Fitness and Wellness Index (SFWI) survey. VR Dispersion (standard deviation of 12 T-scores for neck, upper extremity, and lower extremity responses to congruent vs. incongruent stimuli originating from central vs. peripheral locations) and SFWI response patterns were the primary outcomes of interest. Results Logistic regression modeling of VR Dispersion (range: 1.5-21.8), SFWI (range: 44-100), and an interaction between them provided 81% HxC classification accuracy (Model χ 2[2] = 26.03, p < .001; Hosmer & Lemeshow χ 2[8] = 1.86, p = .967; Nagelkerke R 2 = .427; Area Under Curve = .841, 95% CI: .734, .948). Binary modeling that included VR Dispersion ≥3.2 and SFWI ≤86 demonstrated 75% sensitivity and 86% specificity with both factors positive (Odds Ratio = 17.6, 95% CI: 5.0, 62.1). Discussion/Conclusion Detection of subtle indicators of altered brain processes that might otherwise remain unrecognized is clearly important for both short-term and long-term clinical management of concussion. Inconsistency among neck, upper extremity, and lower extremity responses to different types of moving visual stimuli, along with survey responses suggesting suboptimal well-being, merit further investigation as possible clinical indicators of persisting effects of concussion that might prove to be modifiable.
Collapse
Affiliation(s)
- Gary B Wilkerson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Marisa A Colston
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Shellie N Acocello
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Jennifer A Hogg
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Lynette M Carlson
- Department of Health and Human Performance, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| |
Collapse
|
6
|
Siedlecki P, Shoemaker JK, Ivanova TD, Garland SJ. Cardiovascular response to postural perturbations of different intensities in healthy young adults. Physiol Rep 2022; 10:e15299. [PMID: 35531916 PMCID: PMC9082380 DOI: 10.14814/phy2.15299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 04/15/2023] Open
Abstract
The ability to regain control of balance is vital in limiting falls and injuries. Little is known regarding how the autonomic nervous system responds during recovery from balance perturbations of different intensities. The purpose of this study was to examine the cardiovascular response following a standing balance perturbation of varying intensities, quantify cardiac baroreflex sensitivity (cBRS) during standing perturbations, and to establish the stability of the cardiac baroreflex during quiet standing before and after balance disturbances. Twenty healthy participants experienced three different perturbation intensity conditions that each included 25 brief posteriorly-directed perturbations, 8-10 s apart. Three perturbation intensity conditions (low, medium, high) were given in random order. Physiological data were collected in quiet stance for 5 min before testing (Baseline) and again after the perturbation conditions (Recovery) to examine baroreflex stability. Beat-to-beat heart rate (HR) and systolic blood pressure (SBP) analysis post-perturbation indicated an immediate acceleration of the HR for 1-2 s, with elevated SBP 4-5 s post-perturbation. Heart rate changes were greatest in the medium (p = 0.035) and high (p = 0.012) intensities compared to low, while there were no intensity-dependent changes in SBP. The cBRS was not intensity-dependent (p = 0.402) but when perturbation conditions were combined, cBRS was elevated compared to Baseline (p = 0.046). The stability of baseline cBRS was excellent (ICC = 0.896) between quiet standing conditions. In summary, HR, but not SBP or cBRS were intensity-specific during postural perturbations. This was the first study to examine cardiovascular response and cBRS to postural perturbations.
Collapse
Affiliation(s)
| | | | | | - S. Jayne Garland
- Faculty of Health SciencesWestern UniversityLondonOntarioCanada
- Department of Physiology & PharmacologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
7
|
Vike NL, Bari S, Stetsiv K, Walter A, Newman S, Kawata K, Bazarian JJ, Martinovich Z, Nauman EA, Talavage TM, Papa L, Slobounov SM, Breiter HC. A preliminary model of football-related neural stress that integrates metabolomics with transcriptomics and virtual reality. iScience 2022; 25:103483. [PMID: 35106455 PMCID: PMC8786649 DOI: 10.1016/j.isci.2021.103483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 12/06/2022] Open
Abstract
Research suggests contact sports affect neurological health. This study used permutation-based mediation statistics to integrate measures of metabolomics, neuroinflammatory miRNAs, and virtual reality (VR)-based motor control to investigate multi-scale relationships across a season of collegiate American football. Fourteen significant mediations (six pre-season, eight across-season) were observed where metabolites always mediated the statistical relationship between miRNAs and VR-based motor control (pSobelperm≤ 0.05; total effect > 50%), suggesting a hypothesis that metabolites sit in the statistical pathway between transcriptome and behavior. Three results further supported a model of chronic neuroinflammation, consistent with mitochondrial dysfunction: (1) Mediating metabolites were consistently medium-to-long chain fatty acids, (2) tricarboxylic acid cycle metabolites decreased across-season, and (3) accumulated head acceleration events statistically moderated pre-season metabolite levels to directionally model post-season metabolite levels. These preliminary findings implicate potential mitochondrial dysfunction and highlight probable peripheral blood biomarkers underlying repetitive head impacts in otherwise healthy collegiate football athletes. Permutation-based mediation statistics can be applied to multi-scale biology problems Fatty acids were a critical link between elevated miRNAs and motor control HAEs interacted with pre-season metabolite levels to model post-season levels Together, our observations point to brain-related mitochondrial dysfunction
Collapse
Affiliation(s)
- Nicole L Vike
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sumra Bari
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Khrystyna Stetsiv
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexa Walter
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16801, USA
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Keisuke Kawata
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN 47405, USA.,Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Zoran Martinovich
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.,School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas M Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.,School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA.,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, FL 32806, USA
| | - Semyon M Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16801, USA
| | - Hans C Breiter
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard School of Medicine, Boston, MA 02114, USA
| |
Collapse
|
8
|
Cook NE, Huebschmann NA, Iverson GL. Safety and Tolerability of an Innovative Virtual Reality-Based Deep Breathing Exercise in Concussion Rehabilitation: A Pilot Study. Dev Neurorehabil 2021; 24:222-229. [PMID: 33126815 DOI: 10.1080/17518423.2020.1839981] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To examine the safety and tolerability of a virtual reality-based deep breathing exercise for children and adolescents who are slow to recover from concussion. Methods: Fifteen participants (ages 11 to 22; mean = 16.9 years) were recruited from a specialty concussion clinic within a tertiary care medical center. Participants completed a 5-min paced deep breathing exercise administered via a virtual reality headset. Results: Nearly all participants (93.3%) reported the experience was either positive or extremely positive. No participants reported significant discomfort or discontinued the exercise. Three participants reported a mild increase in headache, dizziness, or nausea. Participants reported significant decreases in stress (r =.57), tension (r =.73), fatigue (r =.73), and confusion (r =.67), with large effect sizes, following the deep breathing exercise. Conclusion: A brief, virtual reality-based deep breathing exercise is worthy of additional study as a rehabilitation component for children and adolescents with prolonged concussion recoveries.
Collapse
Affiliation(s)
- Nathan E Cook
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA.,Spaulding Rehabilitation Hospital, Spaulding Research Institute, Charlestown, MA, USA.,MassGeneral Hospital for Children Sports Concussion Program, Boston, MA, USA
| | - Nathan A Huebschmann
- Spaulding Rehabilitation Hospital, Spaulding Research Institute, Charlestown, MA, USA.,MassGeneral Hospital for Children Sports Concussion Program, Boston, MA, USA
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA.,Spaulding Rehabilitation Hospital, Spaulding Research Institute, Charlestown, MA, USA.,MassGeneral Hospital for Children Sports Concussion Program, Boston, MA, USA.,Center for Health and Rehabilitation Research, Charlestown, MA, USA
| |
Collapse
|
9
|
Caccese JB, Santos FV, Yamaguchi FK, Buckley TA, Jeka JJ. Persistent Visual and Vestibular Impairments for Postural Control Following Concussion: A Cross-Sectional Study in University Students. Sports Med 2021; 51:2209-2220. [PMID: 33881749 DOI: 10.1007/s40279-021-01472-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To examine how concussion may impair sensory processing for control of upright stance. METHODS Participants were recruited from a single university into 3 groups: 13 participants (8 women, 21 ± 3 years) between 2 weeks and 6 months post-injury who initiated a return-to-play progression (under physician management) by the time of testing (recent concussion group), 12 participants (7 women, 21 ± 1 years) with a history of concussion (concussion history group, > 1 year post-injury), and 26 participants (8 women, 22 ± 3 years) with no concussion history (control group). We assessed sensory reweighting by simultaneously perturbing participants' visual, vestibular, and proprioceptive systems and computed center of mass gain relative to each modality. The visual stimulus was a sinusoidal translation of the visual scene at 0.2 Hz, the vestibular stimulus was ± 1 mA binaural monopolar galvanic vestibular stimulation (GVS) at 0.36 Hz, the proprioceptive stimulus was Achilles' tendon vibration at 0.28 Hz. RESULTS The recent concussion (95% confidence interval 0.078-0.115, p = 0.001) and the concussion history (95% confidence interval 0.056-0.094, p = 0.038) groups had higher gains to the vestibular stimulus than the control group (95% confidence interval 0.040-0.066). The recent concussion (95% confidence interval 0.795-1.159, p = 0.002) and the concussion history (95% confidence interval 0.633-1.012, p = 0.018) groups had higher gains to the visual stimulus than the control group (95% confidence interval 0.494-0.752). There were no group differences in gains to the proprioceptive stimulus or in sensory reweighting. CONCLUSION Following concussion, participants responded more strongly to visual and vestibular stimuli during upright stance, suggesting they may have abnormal dependence on visual and vestibular feedback. These findings may indicate an area for targeted rehabilitation interventions.
Collapse
Affiliation(s)
- Jaclyn B Caccese
- School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, 453 W. 10th Avenue, Columbus, OH, 43210, USA.
| | | | - Felipe K Yamaguchi
- Department of Kinesiology & Applied Physiology and Interdisciplinary Biomechanics and Movement Science Program, University of Delaware, Newark, DE, 19713, USA
| | - Thomas A Buckley
- Department of Kinesiology & Applied Physiology and Interdisciplinary Biomechanics and Movement Science Program, University of Delaware, Newark, DE, 19713, USA
| | - John J Jeka
- Department of Kinesiology & Applied Physiology and Interdisciplinary Biomechanics and Movement Science Program, University of Delaware, Newark, DE, 19713, USA
| |
Collapse
|
10
|
Chen Y, Herrold AA, Walter AE, Reilly JL, Seidenberg PH, Nauman EA, Talavage T, Vandenbergh DJ, Slobounov SM, Breiter HC. Brain Perfusion Bridges Virtual-Reality Spatial Behavior to TPH2 Genotype for Head Acceleration Events. J Neurotrauma 2021; 38:1368-1376. [PMID: 33413020 DOI: 10.1089/neu.2020.7016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging demonstrates that athletes of collision sports can suffer significant changes to their brain in the absence of concussion, attributable to head acceleration event (HAE) exposure. In a sample of 24 male Division I collegiate football players, we examine the relationships between tryptophan hydroxylase 2 (TPH2), a gene involved in neurovascular function, regional cerebral blood flow (rCBF) measured by arterial spin labeling, and virtual reality (VR) motor performance, both pre-season and across a single football season. For the pre-season, TPH2 T-carriers showed lower rCBF in two left hemisphere foci (fusiform gyrus/thalamus/hippocampus and cerebellum) in association with higher (better performance) VR Reaction Time, a dynamic measure of sensory-motor reactivity and efficiency of visual-spatial processing. For TPH2 CC homozygotes, higher pre-season rCBF in these foci was associated with better performance on VR Reaction Time. A similar relationship was observed across the season, where TPH2 T-carriers showed improved VR Reaction Time associated with decreases in rCBF in the right hippocampus/amygdala, left middle temporal lobe, and left insula/putamen/pallidum. In contrast, TPH2 CC homozygotes showed improved VR Reaction Time associated with increases in rCBF in the same three clusters. These findings show that TPH2 T-carriers have an abnormal relationship between rCBF and the efficiency of visual-spatial processing that is exacerbated after a season of high-impact sports in the absence of diagnosable concussion. Such gene-environment interactions associated with behavioral changes after exposure to repetitive HAEs have been unrecognized with current clinical analytical tools and warrant further investigation. Our results demonstrate the importance of considering neurovascular factors along with traumatic axonal injury to study long-term effects of repetitive HAEs.
Collapse
Affiliation(s)
- Yufen Chen
- Center for Translational Imaging, Department of Radiology, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amy A Herrold
- Edward Hines Jr., VA Hospital, Research Service, Hines, Illinois, USA.,Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alexa E Walter
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - James L Reilly
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peter H Seidenberg
- Departments of Orthopedics and Rehabilitation and Family and Community Medicine, College of Medicine, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Eric A Nauman
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA.,Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Thomas Talavage
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - David J Vandenbergh
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, USA.,Penn State Neuroscience Institute, Pennsylvania State University, University Park, Pennsylvania, USA.,Molecular, Cellular, and Integrative Biosciences Program, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Semyon M Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Hans C Breiter
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Technology and concussion: A scoping review. JOURNAL OF CONCUSSION 2021. [DOI: 10.1177/2059700221992952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Technology for concussion identification and management is rapidly expanding across the continuum of care. Although many technologies offer a range of services around concussion, there is an absence of a non-commercial online location for medical providers to access regarding the functionality of the various technologies used in concussion identification and management. Objective The purpose of this review is to present research findings on technology for concussion identification and management. Methods Searches for eligible studies were conducted using the PubMed, EMBASE, and Scopus databases with specific search criteria. Through a stepwise process, full-text articles were selected for inclusion if they described clinically useful electronic technologies (i.e. electronics able to be used in standard clinical environments including telehealth) by healthcare providers or end users (i.e. parents or athletes). Results A total of 29 articles were included in this review and described technology used to measure symptoms (3), neurocognitive performance (7), the visual system (4), and balance or dual task performance (18). Within the results, various technologies demonstrated increased utility for concussion identification, often detecting subtle deficits not possible with current low-tech clinical methods, differentiating those with concussion from those without concussion, with strong reliability and validity. Conclusion Innovative technologies included in this review demonstrate enhanced ability to identify and manage symptoms of concussion, neurocognitive deficits, visual deficits, and balance and dual-task deficits.
Collapse
|
12
|
Effect of subconcussive impacts on functional outcomes over a single collegiate football season. JOURNAL OF CONCUSSION 2020. [DOI: 10.1177/2059700220983165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Context In collision sports, particularly American football, athletes can accumulate thousands of subconcussive impacts, or head acceleration events (HAEs), across a single season; however, the short-term consequences of these impacts are not well understood. Objective To investigate the effects of the accumulation of impacts during practices on cognitive functions over a single football season. Design Prospective observational study. Setting Athletic training room and University laboratory. Participants Twenty-three NCAA Football Bowl Subdivision players. Main outcome measures Helmet accelerometers during practices and virtual reality testing (VR; balance, reaction time, spatial memory) before and after the season. Results Preseason had the majority of ≥80 G impacts while during the season had the majority of ≥25 G to <80 G impacts and positional differences showed that linemen had the majority of both types. Virtual reality analysis revealed that scores significantly decreased after the season for spatial navigation ( p < 0.05) but not for balance or reaction time. Significant correlations ( p < 0.05) were found between cognitive measures and player demographic variables. Conclusions Even in the absence of clinical symptoms and concussion diagnosis, repetitive impacts may cause cognitive alterations. Documenting the distribution of impact quantity and intensity as a function of time and position may be considered by coaches and clinicians to reduce the accumulation of impacts in athletes exposed in contact sports.
Collapse
|
13
|
Ralston JD, Raina A, Benson BW, Peters RM, Roper JM, Ralston AB. Physiological Vibration Acceleration (Phybrata) Sensor Assessment of Multi-System Physiological Impairments and Sensory Reweighting Following Concussion. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2020; 13:411-438. [PMID: 33324120 PMCID: PMC7733539 DOI: 10.2147/mder.s279521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2020] [Indexed: 11/23/2022] Open
Abstract
Objective To assess the utility of a head-mounted wearable inertial motion unit (IMU)-based physiological vibration acceleration (“phybrata”) sensor to support the clinical diagnosis of concussion, classify and quantify specific concussion-induced physiological system impairments and sensory reweighting, and track individual patient recovery trajectories. Methods Data were analyzed from 175 patients over a 12-month period at three clinical sites. Comprehensive clinical concussion assessments were first completed for all patients, followed by testing with the phybrata sensor. Phybrata time series data and spatial scatter plots, eyes open (Eo) and eyes closed (Ec) phybrata powers, average power (Eo+Ec)/2, Ec/Eo phybrata power ratio, time-resolved phybrata spectral density (TRPSD) distributions, and receiver operating characteristic (ROC) curves are compared for individuals with no objective impairments and those clinically diagnosed with concussions and accompanying vestibular impairment, other neurological impairment, or both vestibular and neurological impairments. Finally, pre- and post-injury phybrata case report results are presented for a participant who was diagnosed with a concussion and subsequently monitored during treatment, rehabilitation, and return-to-activity clearance. Results Phybrata data demonstrate distinct features and patterns for individuals with no discernable clinical impairments, diagnosed vestibular pathology, and diagnosed neurological pathology. ROC curves indicate that the average power (Eo+Ec)/2 may be utilized to support clinical diagnosis of concussion, while Eo and Ec/Eo may be utilized as independent measures to confirm accompanying neurological and vestibular impairments, respectively. All 3 measures demonstrate area under the curve (AUC), sensitivity, and specificity above 90% for their respective diagnoses. Phybrata spectral analyses demonstrate utility for quantifying the severity of concussion-induced physiological impairments, sensory reweighting, and subsequent monitoring of improvements throughout treatment and rehabilitation. Conclusion Phybrata testing assists with objective concussion diagnosis and provides an important adjunct to standard concussion assessment tools by objectively ascertaining neurological and vestibular impairments, guiding targeted rehabilitation strategies, monitoring recovery, and assisting with return-to-sport/work/learn decision-making.
Collapse
Affiliation(s)
| | - Ashutosh Raina
- Center of Excellence for Pediatric Neurology, Rocklin, CA 95765, USA.,Concussion Medical Clinic, Rocklin, CA 95765, USA
| | - Brian W Benson
- Benson Concussion Institute, Calgary, Alberta T3B 6B7, Canada.,Canadian Sport Institute Calgary, Calgary, Alberta T3B 5R5, Canada
| | - Ryan M Peters
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
14
|
Chen Y, Herrold AA, Martinovich Z, Bari S, Vike NL, Blood AJ, Walter AE, Harezlak J, Seidenberg PH, Bhomia M, Knollmann-Ritschel B, Stetsiv K, Reilly JL, Nauman EA, Talavage TM, Papa L, Slobounov S, Breiter HC. Brain Perfusion Mediates the Relationship Between miRNA Levels and Postural Control. Cereb Cortex Commun 2020; 1:tgaa078. [PMID: 34296137 PMCID: PMC8153038 DOI: 10.1093/texcom/tgaa078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/09/2020] [Accepted: 10/04/2020] [Indexed: 12/13/2022] Open
Abstract
Transcriptomics, regional cerebral blood flow (rCBF), and a virtual reality-based spatial motor task were integrated using mediation analysis in a novel demonstration of “imaging omics.” Data collected in National Collegiate Athletic Association (NCAA) Division I football athletes cleared for play before in-season training showed significant relationships in 1) elevated levels of miR-30d and miR-92a to elevated putamen rCBF, 2) elevated putamen rCBF to compromised Balance scores, and 3) compromised Balance scores to elevated microRNA (miRNA) levels. rCBF acted as a consistent mediator variable (Sobel’s test P < 0.05) between abnormal miRNA levels and compromised Balance scores. Given the involvement of these miRNAs in inflammation and immune function and that vascular perfusion is a component of the inflammatory response, these findings support a chronic inflammatory model in these athletes with 11 years of average football exposure. rCBF, a systems biology measure, was necessary for miRNA to affect behavior.
Collapse
Affiliation(s)
- Yufen Chen
- Center for Translational Imaging, Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy A Herrold
- Edward Hines Jr., VA Hospital, Research Service, Hines, IL 60141, USA
| | - Zoran Martinovich
- Mental Health Services and Policy Program, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sumra Bari
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nicole L Vike
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Anne J Blood
- Mood and Motor Control Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Alexa E Walter
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN 47405, USA
| | - Peter H Seidenberg
- Departments of Orthopaedics & Rehabilitation and Family & Community Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Manish Bhomia
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Khrystyna Stetsiv
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - James L Reilly
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Thomas M Talavage
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, FL, USA
| | - Semyon Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Hans C Breiter
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
15
|
Nauman EA, Talavage TM, Auerbach PS. Mitigating the Consequences of Subconcussive Head Injuries. Annu Rev Biomed Eng 2020; 22:387-407. [PMID: 32348156 DOI: 10.1146/annurev-bioeng-091219-053447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Subconcussive head injury represents a pathophysiology that spans the expertise of both clinical neurology and biomechanical engineering. From both viewpoints, the terms injury and damage, presented without qualifiers, are synonymously taken to mean a tissue alteration that may be recoverable. For clinicians, concussion is evolving from a purely clinical diagnosis to one that requires objective measurement, to be achieved by biomedical engineers. Subconcussive injury is defined as subclinical pathophysiology in which underlying cellular- or tissue-level damage (here, to the brain) is not severe enough to present readily observable symptoms. Our concern is not whether an individual has a (clinically diagnosed) concussion, but rather, how much accumulative damage an individual can tolerate before they will experience long-term deficit(s) in neurological health. This concern leads us to look for the history of damage-inducing events, while evaluating multiple approaches for avoiding injury through reduction or prevention of the associated mechanically induced damage.
Collapse
Affiliation(s)
- Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA; .,School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Thomas M Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA; .,School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paul S Auerbach
- Department of Emergency Medicine, Stanford University, Palo Alto, California 94304, USA
| |
Collapse
|
16
|
Santos FV, Yamaguchi F, Buckley TA, Caccese JB. Virtual reality in concussion management: from lab to clinic. J Clin Transl Res 2020; 5:148-154. [PMID: 32671279 PMCID: PMC7357617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/06/2020] [Accepted: 04/21/2020] [Indexed: 10/31/2022] Open
Abstract
The use of virtual reality (VR) technology continues to grow in the areas of clinical assessment and rehabilitation. Both researchers and health-care providers are exploring ways to incorporate VR in clinical practice as an emerging technology. VR postural control and neuropsychological testing represent a promising next step in sport-related concussion (SRC) management. This article reviews the current literature on VR applications for SRC assessment. RELEVANCE FOR PATIENTS VR-based postural control assessments suggest that visual motion is destabilizing following SRC, perhaps indicating persistent perceptual-motion disintegration when clinical postural control tests suggest complete recovery. VR can also provide functional neuropsychological assessments using real-life scenarios or virtual environments, which may be more sensitive than traditional pencil-and-paper or computerized neuropsychological assessments.
Collapse
Affiliation(s)
| | - Felipe Yamaguchi
- 2Department of Kinesiology and Applied Physiology, University of Delaware, Delaware, United States
| | - Thomas A. Buckley
- 2Department of Kinesiology and Applied Physiology, University of Delaware, Delaware, United States
| | - Jaclyn B. Caccese
- 3School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, United States,Corresponding author: Jaclyn B. Caccese 453 W. 10th Avenue, Columbus, OH 43210, United States.
| |
Collapse
|
17
|
Abstract
Over the last decade, numerous concussion evidence-based clinical practice guidelines (CPGs), consensus statements, and clinical guidance documents have been published. These documents have typically focused on the diagnosis of concussion and medical management of individuals post concussion, but provide little specific guidance for physical therapy management of concussion and its associated impairments. Further, many of these guidance documents have targeted specific populations in specific care contexts. The primary purpose of this CPG is to provide a set of evidence-based recommendations for physical therapist management of the wide spectrum of patients who have experienced a concussive event. J Orthop Sports Phys Ther 2020;50(4):CPG1-CPG73. doi:10.2519/jospt.2020.0301.
Collapse
|
18
|
Wilkerson GB, Nabhan DC, Prusmack CJ, Moreau WJ. Detection of Persisting Concussion Effects on Neuromechanical Responsiveness. Med Sci Sports Exerc 2019; 50:1750-1756. [PMID: 29683918 DOI: 10.1249/mss.0000000000001647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Assessment of various indices of neuromechanical responsiveness for association with concussion history. METHODS An observational cohort study included 48 elite athletes (34 males: 23.8 ± 4.4 yr; 14 females: 25.4 ± 4.5 yr) who performed visuomotor reaction time (VMRT) tests involving rapid manual contact with illuminated target buttons that included two dual-task conditions: 1) simultaneous oral recitation of scrolling text (VMRT+ST) and 2) simultaneous verbal responses to identify the right or left direction indicated by the center arrow of the Eriksen flanker test (VMRT+FT). A whole-body reactive agility (WBRA) test requiring side-shuffle movements in response to visual targets was used to assess reaction time, speed, acceleration, and deceleration. RESULTS Concussion occurrence at 2.0 ± 2.3 yr before testing was reported by 21 athletes. Strong univariable associations were found for VMRT+FT left minus right difference ≥15 ms (odds ratio [OR], 7.14), VMRT+ST outer two-ring to inner three-ring ratio ≥1.28 (OR, 4.58), and WBRA speed asymmetry ≥7.7% (OR, 4.67). A large VMRT+FT by VMRT+ST interaction effect was identified (OR, 25.00). Recursive partitioning identified a three-way VMRT+FT by VMRT+ST by WBRA interaction that had 100% positive predictive value for identification of athletes with concussion history, whereas negative status on all three factors had 90% negative predictive value. CONCLUSIONS Performance on dual-task VMRT tests and the WBRA test identified neuromechanical responsiveness deficiencies among elite athletes who reported a history of concussion.
Collapse
Affiliation(s)
| | - Dustin C Nabhan
- US Olympic Committee, US Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs, CO
| | | | - William J Moreau
- US Olympic Committee, US Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs, CO
| |
Collapse
|