1
|
Zhou P, Yang L, Ma X, Li Q. Sevoflurane inhibits lung cancer development by promoting FUS1 transcription via downregulating IRF6. Carcinogenesis 2024; 45:543-555. [PMID: 38819072 DOI: 10.1093/carcin/bgae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024] Open
Abstract
Lung cancer is a major contributor to cancer deaths worldwide and is on the rise. Although surgical resection has been widely used as a standard therapy for lung cancer patients, the relapse rate after surgery is high. It is still unclear whether there is a potential drug that can reduce the probability of postsurgical recurrence in lung cancer patients. We used 5 typical lung cancer cell lines as well as 41 lung cancer tissue samples and paracancer tissue samples to investigate the expression levels of interferon regulatory factor 6 (IRF6) and tumor suppressor candidate 2 (TUSC2, also known as FUS1). We also treated lung cancer cells (H322 and A549) with different concentrations of sevoflurane to study its influence on lung cancer cell tumorigenesis. Lentivirus-mediated gain-of-function studies of IRF6 and FUS1 were applied to validate the role of IRF6 and FUS1 in lung cancer. Next, we used short hairpin RNA-mediated loss of function of IRF6 and luciferase, chromatin immunoprecipitation assays to validate the regulatory role of IRF6 on FUS1. Our findings reported that IRF6 was upregulated in lung cancer tissues, while FUS1 was downregulated. Functional assays revealed that sevoflurane inhibits lung cancer development by downregulating IRF6 expression. Luciferase and chromatin immunoprecipitation-quantitative real-time PCR assays uncovered that IRF6 represses FUS1 transcriptional expression in lung cancer cells. We have shown that sevoflurane prevents lung cancer development by downregulating IRF6 to stimulate FUS1 transcription, indicating that sevoflurane can be used as the potential anesthetic drug in surgical resection to reduce postoperative tumor relapse in lung cancer patients.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road, No. 139, Changsha City, Hunan Province 410011, People's Republic of China
| | - Lei Yang
- Department of Oncology, Gansu University of Chinese Medicine, No. 35 Dingxi East Road, Chengguan District, Lanzhou City, Gansu Province 730000, People's Republic of China
| | - Xinyu Ma
- Department of Surgery, Hunan Chest Hospital, No. 519 Xianjiahu Road, Yuelu District, Changsha City, Hunan Province 410205, People's Republic of China
| | - Qiuguo Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Central Ren-Min Road, No. 139, Changsha City, Hunan Province 410011, People's Republic of China
- Department of Surgery, Hunan Chest Hospital, No. 519 Xianjiahu Road, Yuelu District, Changsha City, Hunan Province 410205, People's Republic of China
| |
Collapse
|
2
|
N. Kachouie N, Deebani W, Shutaywi M, Christiani DC. Lung cancer clustering by identification of similarities and discrepancies of DNA copy numbers using maximal information coefficient. PLoS One 2024; 19:e0301131. [PMID: 38739669 PMCID: PMC11090345 DOI: 10.1371/journal.pone.0301131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/11/2024] [Indexed: 05/16/2024] Open
Abstract
Lung cancer is the second most diagnosed cancer and the first cause of cancer related death for men and women in the United States. Early detection is essential as patient survival is not optimal and recurrence rate is high. Copy number (CN) changes in cancer populations have been broadly investigated to identify CN gains and deletions associated with the cancer. In this research, the similarities between cancer and paired peripheral blood samples are identified using maximal information coefficient (MIC) and the spatial locations with substantially high MIC scores in each chromosome are used for clustering analysis. The results showed that a sizable reduction of feature set can be obtained using only a subset of locations with high MIC values. The clustering performance was evaluated using both true rate and normalized mutual information (NMI). Clustering results using the reduced feature set outperformed the performance of clustering using entire feature set in several chromosomes that are highly associated with lung cancer with several identified oncogenes.
Collapse
Affiliation(s)
- Nezamoddin N. Kachouie
- Department of Mathematics and Systems Engineering, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Wejdan Deebani
- Mathematics Department, College of Science and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Meshal Shutaywi
- Mathematics Department, College of Science and Arts, King Abdulaziz University, Jeddah, Saudi Arabia
| | - David C. Christiani
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, United States of America
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States of America
| |
Collapse
|
3
|
Zhou Y, Wang F, Li G, Xu J, Zhang J, Gullen E, Yang J, Wang J. From immune checkpoints to therapies: understanding immune checkpoint regulation and the influence of natural products and traditional medicine on immune checkpoint and immunotherapy in lung cancer. Front Immunol 2024; 15:1340307. [PMID: 38426097 PMCID: PMC10902058 DOI: 10.3389/fimmu.2024.1340307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is a disease of global concern, and immunotherapy has brought lung cancer therapy to a new era. Besides promising effects in the clinical use of immune checkpoint inhibitors, immune-related adverse events (irAEs) and low response rates are problems unsolved. Natural products and traditional medicine with an immune-modulating nature have the property to influence immune checkpoint expression and can improve immunotherapy's effect with relatively low toxicity. This review summarizes currently approved immunotherapy and the current mechanisms known to regulate immune checkpoint expression in lung cancer. It lists natural products and traditional medicine capable of influencing immune checkpoints or synergizing with immunotherapy in lung cancer, exploring both their effects and underlying mechanisms. Future research on immune checkpoint modulation and immunotherapy combination applying natural products and traditional medicine will be based on a deeper understanding of their mechanisms regulating immune checkpoints. Continued exploration of natural products and traditional medicine holds the potential to enhance the efficacy and reduce the adverse reactions of immunotherapy.
Collapse
Affiliation(s)
- Yibin Zhou
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenglan Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guangda Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Zhang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Elizabeth Gullen
- Department of Pharmacology, Yale Medical School, New Haven, CT, United States
| | - Jie Yang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Yin Y, Guan X, Li G, Chen C, Duan Y, Yu Z. The HDAC inhibitor HFY-4A improves TUSC2 transcription to induce immunogenic cell death in breast cancer. Toxicol Appl Pharmacol 2023; 478:116698. [PMID: 37742871 DOI: 10.1016/j.taap.2023.116698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
We managed to explore the function of HFY-4A, a novel histone deacetylases (HDACs) inhibitor, on breast cancer as well as its potential mechanisms. MCF7 and T47D cells were treated with 0.8, 1.6 or 3.2 μM HFY-4A for 0-72 h, following of which CCK-8, colony formation, EdU staining, flow cytometry, Transwell, and wound healing assays were carried out. Western blot, immunohistochemistry, and ELISA were conducted for assaying the expression of immunogenic cell death (ICD)-related proteins. The interaction between HFY-4A, HDAC1, and tumor suppressor candidate 2 (TUSC2) was evaluated by chromatin immunoprecipitation assay. Further, the function of HFY-4A in breast cancer progression in vivo was evaluated using xenograft mouse models. HFY-4A inhibited the proliferation, migration, and invasion, and induced apoptosis of breast cancer cells in a dose-dependent manner. HFY-4A dose-dependently caused the ICD of breast cancer cells, as evidenced by the significant high levels of high-mobility group box 1 (HMGB1), calreticulin (CRT), heat shock protein 70 (HSP70), and HSP90. Interestingly, HFY-4A could facilitate TUSC2 transcription by promoting acetylation of histones on the TUSC2 promoter. The results of rescue assays revealed that HFY-4A repressed proliferation and mobility, but enhanced apoptosis and ICD through facilitating TUSC2 transcription in breast cancer. In breast cancer xenograft mouse models, HFY-4A was verified to inhibit tumor growth via upregulating TUSC2. HFY-4A could inhibit breast cancer cell proliferation and mobility, and enhanced apoptosis and ICD through facilitating TUSC2 transcription.
Collapse
Affiliation(s)
- Yongshuo Yin
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China; Department of Breast Surgery, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Xiao Guan
- Department of Health Management Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250063, PR China
| | - Genju Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250100, PR China
| | - Chen Chen
- School of Pharmaceutical Sciences, Qilu University of Technology, Jinan, Shandong 250353, PR China
| | - Yangmiao Duan
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250100, PR China
| | - Zhiyong Yu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China; Department of Breast Surgery, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
5
|
Uzhachenko R, Shimamoto A, Chirwa SS, Ivanov SV, Ivanova AV, Shanker A. Mitochondrial Fus1/Tusc2 and cellular Ca2 + homeostasis: tumor suppressor, anti-inflammatory and anti-aging implications. Cancer Gene Ther 2022; 29:1307-1320. [PMID: 35181743 PMCID: PMC9576590 DOI: 10.1038/s41417-022-00434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022]
Abstract
FUS1/TUSC2 (FUSion1/TUmor Suppressor Candidate 2) is a tumor suppressor gene (TSG) originally described as a member of the TSG cluster from human 3p21.3 chromosomal region frequently deleted in lung cancer. Its role as a TSG in lung, breast, bone, and other cancers was demonstrated by several groups, but molecular mechanisms of its activities are starting to unveil lately. They suggest that Fus1-dependent mechanisms are relevant in etiologies of diseases beyond cancer, such as chronic inflammation, bacterial and viral infections, premature aging, and geriatric diseases. Here, we revisit the discovery of FUS1 gene in the context of tumor initiation and progression, and review 20 years of research into FUS1 functions and its molecular, structural, and biological aspects that have led to its use in clinical trials and gene therapy. We present a data-driven view on how interactions of Fus1 with the mitochondrial Ca2+ (mitoCa2+) transport machinery maintain cellular Ca2+ homeostasis and control cell apoptosis and senescence. This Fus1-mediated cellular homeostasis is at the crux of tumor suppressor, anti-inflammatory and anti-aging activities.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, TN, USA
| | - Sanika S Chirwa
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Sergey V Ivanov
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Alla V Ivanova
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA.
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN, USA.
- Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Rimkus TK, Arrigo AB, Zhu D, Carpenter RL, Sirkisoon S, Doheny D, Regua AT, Wong GL, Manore S, Wagner C, Lin HK, Jin G, Ruiz J, Chan M, Debinski W, Lo HW. NEDD4 degrades TUSC2 to promote glioblastoma progression. Cancer Lett 2022; 531:124-135. [PMID: 35167936 PMCID: PMC8920049 DOI: 10.1016/j.canlet.2022.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Whether tumor suppressor candidate 2 (TUSC2) plays an important role in glioblastoma (GBM) progression is largely unknown. Whether TUSC2 undergoes polyubiquitination is unknown. Herein, we report that TUSC2 protein expression is reduced/lost in GBM compared to normal brain due to protein destabilization; TUSC2 mRNA is equally expressed in both tissues. NEDD4 E3 ubiquitin ligase polyubiquitinates TUSC2 at residue K71, and the TUSC2-K71R mutant is resistant to NEDD4-mediated proteasomal degradation. Analysis of GBM specimens showed NEDD4 protein is highly expressed in GBM and the level is inversely correlated with TUSC2 protein levels. Furthermore, TUSC2 restoration induces apoptosis and inhibits patient-derived glioma stem cells (PD-GSCs) in vitro and in vivo. Conversely, TUSC2-knockout promotes PD-GSCs in vitro and in vivo. RNA-Seq analysis and subsequent validations showed GBM cells with TUSC2-knockout expressed increased Bcl-xL and were more resistant to apoptosis induced by a Bcl-xL-specific BH3 mimetic. A TUSC2-knockout gene signature created from the RNA-seq data predicts poor patient survival. Together, these findings establish that NEDD4-mediated polyubiquitination is a novel mechanism for TUSC2 degradation in GBM and that TUSC2 loss promotes GBM progression in part through Bcl-xL upregulation.
Collapse
|
7
|
Mao J, Zhang Z, Chen Y, Wu T, Fersht V, Jin Y, Meng J, Zhang M. Sea cucumber peptides inhibit the malignancy of NSCLC by regulating miR-378a-5p targeted TUSC2. Food Funct 2021; 12:12362-12371. [PMID: 34788772 DOI: 10.1039/d1fo02267a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lung cancer is a common cancer with high mortality worldwide, and non-small cell lung cancer (NSCLC) accounts for the majority. The clinical treatment effect of NSCLC is not ideal. The aim of this study was to investigate the inhibitory effect of sea cucumber peptide (SCP) on NSCLC and its mechanism. The results showed that SCP could effectively inhibit the proliferation, migration and invasion of A549 cells. In addition, SCP can also inhibit the formation of pleural effusion and tumor growth in lung cancer mice, reduce liver and kidney injury, increase the levels of IL-2 and IL-12, decrease the levels of IL-6 and TNF-α, and prolong the survival time of mice. The microRNA sequencing and immunohistochemistry of mouse tumors showed that the tumor suppressor gene TUSC2 targeted by miR-378a-5p was involved in the inhibition of tumor growth by SCP. This study provides an experimental basis for the further development of SCP as an anti-tumor nutritional supplement, and provides a new idea for exploring the molecular mechanism of food derived active peptides in anti-tumor applications.
Collapse
Affiliation(s)
- Jing Mao
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Zhuchi Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yongde Chen
- Bestlife Biological Technology Co., Ltd, Hebei Province, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Viktor Fersht
- Center for Applied Medicine and Food Safety "Biomed", Lomonosov Moscow State University, Moscow, Russia
| | - Yan Jin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
- China-Russia Agricultural Products Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, PR China
| |
Collapse
|
8
|
Sun S, Kong Q, Cai Z, Wang M, Zhao H, Zhao C. circ‑Grm1 promotes pulmonary artery smooth muscle cell proliferation and migration via suppression of GRM1 expression by FUS. Int J Mol Med 2021; 48:202. [PMID: 34528696 PMCID: PMC8480385 DOI: 10.3892/ijmm.2021.5035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 01/15/2023] Open
Abstract
Pulmonary arterial hypertension is a progressive and fatal disease. Recent studies suggest that circular RNA (circRNAs/circs) can regulate various biological processes, including cell proliferation. Therefore, it is possible that circRNA may have important roles in pulmonary artery smooth muscle cell proliferation in hypoxic pulmonary hypertension (HPH). The aim of the present study was to determine the role and mechanism of circRNA‑glutamate metabotropic receptor 1 (circ‑Grm1; mmu_circ_0001907) in pulmonary artery smooth muscle cell (PASMC) proliferation and migration in HPH. High‑throughput transcriptome sequencing was used to screen circRNAs and targeted genes involved in HPH. Cell Counting Kit‑8 (CCK‑8), 5‑ethynyl‑2‑deoxyuridine and wound healing assays were employed to assess cell viability and migration. Reverse transcription‑quantitative PCR and western blotting were used to detect target gene expression in different groups. Bioinformatical approaches were used to predict the interaction probabilities of circ‑Grm1 and Grm1 with FUS RNA binding protein (FUS). The interactions of circ‑Grm1, Grm1 and FUS were evaluated using RNA silencing and RNA immunoprecipitation assays. The results demonstrated that circ‑Grm1 was upregulated in hypoxic PASMCs. Further experiments revealed that the knockdown of circ‑Grm1 could suppress the proliferation and migration of hypoxic PASMCs. Transcriptome sequencing revealed that Grm1 could be the target gene of circ‑Grm1. It was found that circ‑Grm1 could competitively bind to FUS and consequently downregulate Grm1. Moreover, Grm1 could inhibit the function of circ‑Grm1 by promoting the proliferative and migratory abilities of hypoxic PASMCs. The results also demonstrated that circ‑Grm1 influenced the biological functions of PASMCs via the Rap1/ERK pathway by regulating Grm1. Overall, the current results suggested that circ‑Grm1 was associated with HPH and promoted the proliferation and migration of PASMCs via suppression of Grm1 expression through FUS.
Collapse
Affiliation(s)
- Shijing Sun
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Pediatrics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266034, P.R. China
| | - Qingyu Kong
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhifeng Cai
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Minmin Wang
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Haizhao Zhao
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
9
|
Jakoube P, Cutano V, González-Morena JM, Keckesova Z. Mitochondrial Tumor Suppressors-The Energetic Enemies of Tumor Progression. Cancer Res 2021; 81:4652-4667. [PMID: 34183354 PMCID: PMC9397617 DOI: 10.1158/0008-5472.can-21-0518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Tumor suppressors represent a critical line of defense against tumorigenesis. Their mechanisms of action and the pathways they are involved in provide important insights into cancer progression, vulnerabilities, and treatment options. Although nuclear and cytosolic tumor suppressors have been extensively investigated, relatively little is known about tumor suppressors localized within the mitochondria. However, recent research has begun to uncover the roles of these important proteins in suppressing tumorigenesis. Here, we review this newly developing field and summarize available information on mitochondrial tumor suppressors.
Collapse
Affiliation(s)
- Pavel Jakoube
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Valentina Cutano
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Juan M. González-Morena
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Keckesova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Corresponding Author: Zuzana Keckesova, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 16000, Czech Republic. Phone: 420-2201-83584; E-mail:
| |
Collapse
|
10
|
Ghafouri-Fard S, Hajiesmaeili M, Shoorei H, Bahroudi Z, Taheri M, Sharifi G. The Impact of lncRNAs and miRNAs in Regulation of Function of Cancer Stem Cells and Progression of Cancer. Front Cell Dev Biol 2021; 9:696820. [PMID: 34368145 PMCID: PMC8339916 DOI: 10.3389/fcell.2021.696820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cells have two important features, namely the ability for self-renewal and the capacity to differentiate into some cell kinds with specialized functions. These two features are also present in cancer stem cells (CSCs). These cells have been detected in almost all kinds of cancers facilitating their tumorigenicity. Molecular cascades that control self-renewal of stem cells, namely the Wnt, Notch, and Hedgehog pathways have been suggested to influence CSCs functions as well. Moreover, non-coding RNAs can regulate function of CSCs. Function of miRNAs in the regulation of CSCs has been mostly assessed in breast cancer and hepatocellular carcinoma. miR-130a-3p, miR-600, miR-590-5p, miR-142-3p, miR-221, miR-222, miR-638, miR-375, miR-31, and miR-210 are among those regulating this feature in breast cancer. Moreover, miR-206, miR-192-5p, miR-500a-3p, miR-125, miR-125b, miR-613, miR-217, miR-194, and miR-494 regulate function of CSCs in hepatocellular carcinoma. DILC, lncTCF7, MUF, HAND2-AS1, MALAT1, DLX6-AS1, HOTAIR, and XIST are among lncRNAs that regulate function of CSCs. In the present paper, we explain the effects of these two classes of non-coding RNAs in the regulation of activity of CSCs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Xiu Y, Li Y, Liu X, Su L, Zhou S, Li C. Identification and Characterization of Long Non-coding RNAs in the Intestine of Olive Flounder ( Paralichthys olivaceus) During Edwardsiella tarda Infection. Front Immunol 2021; 12:623764. [PMID: 33868240 PMCID: PMC8044400 DOI: 10.3389/fimmu.2021.623764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play widespread roles in fundamental biological processes, including immune responses. The olive flounder (Paralichthys olivaceus), an important economical flatfish widely cultured in Japan, Korea, and China, is threatened by infectious pathogens, including bacteria, viruses, and parasites. However, the role of lncRNAs in the immune responses of this species against pathogen infections is not well-understood. Therefore, in this study, we aimed to identify lncRNAs in the intestine of olive flounder and evaluate their differential expression profiles during Edwardsiella tarda infection, which is an important zoonotic and intestinal pathogen. A total of 4,445 putative lncRNAs were identified, including 3,975 novel lncRNAs and 470 annotated lncRNAs. These lncRNAs had shorter lengths and fewer exons compared with mRNAs. In total, 115 differentially expressed lncRNAs (DE-lncRNAs) were identified during E. tarda infection. To validate the expression pattern of lncRNAs, six DE-lncRNAs were randomly selected for quantitative real-time PCR. The co-located and co-expressed mRNAs of DE-lncRNAs were predicted, which were used to conduct the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The target genes of DE-lncRNAs enriched numerous immune-related processes and exhibited a strong correlation with immune-related signaling pathways. To better understand the extensive regulatory functions of lncRNAs, the lncRNA–miRNA–mRNA regulatory networks were constructed, and two potential competing endogenous RNA (ceRNA) networks, LNC_001979-novel_171-Potusc2 and LNC_001979-novel_171-Podad1, were preliminarily identified from the intestine of olive flounders for the first time. In conclusion, this study provides an invaluable annotation and expression profile of lncRNAs in the intestine of olive flounder infected with E. tarda; this forms a basis for further studies on the regulatory function of lncRNAs in the intestinal mucosal immune responses of olive flounder.
Collapse
Affiliation(s)
- Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yingrui Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China.,College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Xiaofei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China.,College of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - Lin Su
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shun Zhou
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
12
|
Kozar I, Philippidou D, Margue C, Gay LA, Renne R, Kreis S. Cross-Linking Ligation and Sequencing of Hybrids (qCLASH) Reveals an Unpredicted miRNA Targetome in Melanoma Cells. Cancers (Basel) 2021; 13:1096. [PMID: 33806450 PMCID: PMC7961530 DOI: 10.3390/cancers13051096] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 01/13/2023] Open
Abstract
MicroRNAs are key post-transcriptional gene regulators often displaying aberrant expression patterns in cancer. As microRNAs are promising disease-associated biomarkers and modulators of responsiveness to anti-cancer therapies, a solid understanding of their targetome is crucial. Despite enormous research efforts, the success rates of available tools to reliably predict microRNAs (miRNA)-target interactions remains limited. To investigate the disease-associated miRNA targetome, we have applied modified cross-linking ligation and sequencing of hybrids (qCLASH) to BRAF-mutant melanoma cells. The resulting RNA-RNA hybrid molecules provide a comprehensive and unbiased snapshot of direct miRNA-target interactions. The regulatory effects on selected miRNA target genes in predicted vs. non-predicted binding regions was validated by miRNA mimic experiments. Most miRNA-target interactions deviate from the central dogma of miRNA targeting up to 60% interactions occur via non-canonical seed pairing with a strong contribution of the 3' miRNA sequence, and over 50% display a clear bias towards the coding sequence of mRNAs. miRNAs targeting the coding sequence can directly reduce gene expression (miR-34a/CD68), while the majority of non-canonical miRNA interactions appear to have roles beyond target gene suppression (miR-100/AXL). Additionally, non-mRNA targets of miRNAs (lncRNAs) whose interactions mainly occur via non-canonical binding were identified in melanoma. This first application of CLASH sequencing to cancer cells identified over 8 K distinct miRNA-target interactions in melanoma cells. Our data highlight the importance non-canonical interactions, revealing further layers of complexity of post-transcriptional gene regulation in melanoma, thus expanding the pool of miRNA-target interactions, which have so far been omitted in the cancer field.
Collapse
Affiliation(s)
- Ines Kozar
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| | - Demetra Philippidou
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| | - Christiane Margue
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| | - Lauren A. Gay
- Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA; (L.A.G.); (R.R.)
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA; (L.A.G.); (R.R.)
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg; (I.K.); (D.P.); (C.M.)
| |
Collapse
|
13
|
Men H, Cai H, Cheng Q, Zhou W, Wang X, Huang S, Zheng Y, Cai L. The regulatory roles of p53 in cardiovascular health and disease. Cell Mol Life Sci 2021; 78:2001-2018. [PMID: 33179140 PMCID: PMC11073000 DOI: 10.1007/s00018-020-03694-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality globally, so further investigation is required to identify its underlying mechanisms and potential targets for its prevention. The transcription factor p53 functions as a gatekeeper, regulating a myriad of genes to maintain normal cell functions. It has received a great deal of research attention as a tumor suppressor. In the past three decades, evidence has also shown a regulatory role for p53 in the heart. Basal p53 is essential for embryonic cardiac development; it is also necessary to maintain normal heart architecture and physiological function. In pathological cardiovascular circumstances, p53 expression is elevated in both patient samples and animal models. Elevated p53 plays a regulatory role via anti-angiogenesis, pro-programmed cell death, metabolism regulation, and cell cycle arrest regulation. This largely promotes the development of CVDs, particularly cardiac remodeling in the infarcted heart, hypertrophic cardiomyopathy, dilated cardiomyopathy, and diabetic cardiomyopathy. Roles for p53 have also been found in atherosclerosis and chemotherapy-induced cardiotoxicity. However, it has different roles in cardiomyocytes and non-myocytes, even in the same model. In this review, we describe the different effects of p53 in cardiovascular physiological and pathological conditions, in addition to potential CVD therapies targeting p53.
Collapse
Affiliation(s)
- Hongbo Men
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, 40202, USA
| | - He Cai
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Quanli Cheng
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Wenqian Zhou
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, 40202, USA
| | - Xiang Wang
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, 40202, USA
| | - Shan Huang
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, 40202, USA
| | - Yang Zheng
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
14
|
Mohammadinejad R, Dehshahri A, Sagar Madamsetty V, Zahmatkeshan M, Tavakol S, Makvandi P, Khorsandi D, Pardakhty A, Ashrafizadeh M, Ghasemipour Afshar E, Zarrabi A. In vivo gene delivery mediated by non-viral vectors for cancer therapy. J Control Release 2020; 325:249-275. [PMID: 32634464 PMCID: PMC7334939 DOI: 10.1016/j.jconrel.2020.06.038] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022]
Abstract
Gene therapy by expression constructs or down-regulation of certain genes has shown great potential for the treatment of various diseases. The wide clinical application of nucleic acid materials dependents on the development of biocompatible gene carriers. There are enormous various compounds widely investigated to be used as non-viral gene carriers including lipids, polymers, carbon materials, and inorganic structures. In this review, we will discuss the recent discoveries on non-viral gene delivery systems. We will also highlight the in vivo gene delivery mediated by non-viral vectors to treat cancer in different tissue and organs including brain, breast, lung, liver, stomach, and prostate. Finally, we will delineate the state-of-the-art and promising perspective of in vivo gene editing using non-viral nano-vectors.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy; Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6153753843, Iran
| | - Danial Khorsandi
- Department of Medical Nanotechnology, Faculty of Advanced, Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran; Department of Biotechnology-Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey.
| |
Collapse
|
15
|
Mariniello RM, Maria Orlandella F, De Stefano AE, Iervolino PLC, Smaldone G, Luciano N, Cervone N, Munciguerra F, Esposito S, Mirabelli P, Salvatore G. The TUSC2 Tumour Suppressor Inhibits the Malignant Phenotype of Human Thyroid Cancer Cells via SMAC/DIABLO Protein. Int J Mol Sci 2020; 21:ijms21030702. [PMID: 31973107 PMCID: PMC7037188 DOI: 10.3390/ijms21030702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Thyroid carcinoma is the most common endocrine cancer and includes different forms. Among these, anaplastic thyroid carcinoma (ATC) is the rarest but the most lethal subtype, compared to papillary thyroid carcinoma (PTC) which shows an overall good prognosis. We have previously showed that Tumor Suppressor Candidate 2 (TUSC2), a known tumour suppressor gene, is downregulated in human PTC and ATC compared to normal thyroid samples. The aim of this study was to gain insight into the molecular mechanisms induced by TUSC2 in thyroid cancer cells. Here, we stably transfected TUSC2 in papillary (TPC-1) and in anaplastic (8505C) thyroid cancer cell lines and studied its effects on several biological processes, demonstrating that TUSC2 overexpression decreased thyroid cancer cell proliferation, migration and invasion. Through the proteome profiler apoptosis array, we observed that TUSC2 increased sensitivity to apoptosis by increasing the SMAC/DIABLO and CYTOCHROME C proteins. On the other hand, transient silencing of TUSC2, by siRNA, in an immortalized thyroid follicular epithelial cell line (Nthy-ori 3-1) showed the opposite effect. Finally modulation of SMAC/DIABLO partially rescued the biological effects of TUSC2. Thus, our data highlight a tumour suppressor role of TUSC2 in thyroid carcinogenesis, suggesting that it could be a promising target and biomarker for thyroid carcinoma.
Collapse
Affiliation(s)
- Raffaela Mariarosaria Mariniello
- Dipartimento di Scienze Motorie e del Benessere, Universita’ “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | | | - Anna Elisa De Stefano
- Dipartimento di Scienze Motorie e del Benessere, Universita’ “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Paola Lucia Chiara Iervolino
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
- Dipartimento di Scienze Biomediche Avanzate, Universita’ “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | | | - Neila Luciano
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Nara Cervone
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Francesco Munciguerra
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Silvia Esposito
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | | | - Giuliana Salvatore
- Dipartimento di Scienze Motorie e del Benessere, Universita’ “Parthenope”, Via Medina 40, 80133 Napoli, Italy
- CEINGE—Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Napoli, Italy
- Correspondence:
| |
Collapse
|
16
|
Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, Tang Y, Mallaredy V, Ibetti J, Grisanti L, Schumacher SM, Gao E, Rajan S, Wilusz JE, Goukassian D, Houser SR, Koch WJ, Kishore R. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun 2019; 10:4317. [PMID: 31541092 PMCID: PMC6754461 DOI: 10.1038/s41467-019-11777-7] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 07/30/2019] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs are generated from many protein-coding genes, but their role in cardiovascular health and disease states remains unknown. Here we report identification of circRNA transcripts that are differentially expressed in post myocardial infarction (MI) mouse hearts including circFndc3b which is significantly down-regulated in the post-MI hearts. Notably, the human circFndc3b ortholog is also significantly down-regulated in cardiac tissues of ischemic cardiomyopathy patients. Overexpression of circFndc3b in cardiac endothelial cells increases vascular endothelial growth factor-A expression and enhances their angiogenic activity and reduces cardiomyocytes and endothelial cell apoptosis. Adeno-associated virus 9 -mediated cardiac overexpression of circFndc3b in post-MI hearts reduces cardiomyocyte apoptosis, enhances neovascularization and improves left ventricular functions. Mechanistically, circFndc3b interacts with the RNA binding protein Fused in Sarcoma to regulate VEGF expression and signaling. These findings highlight a physiological role for circRNAs in cardiac repair and indicate that modulation of circFndc3b expression may represent a potential strategy to promote cardiac function and remodeling after MI. Circular RNAs (circRNAs) are non-coding RNAs generated from pre-mRNAs of coding genes by the splicing machinery whose function in the heart is poorly understood. Here the authors show that AAV-mediated delivery of the circRNA circFndc3b prevents cardiomyocyte apoptosis, enhances angiogenesis, and attenuates LV dysfunction post-MI in mice by regulating FUS-VEGF-A signalling.
Collapse
Affiliation(s)
| | - Suresh Kumar Verma
- Division of Cardiovascular Diseases, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Zhongjian Cheng
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Dongming Liang
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - May M Truongcao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yujia Yue
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Grace Huang
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Chunlin Wang
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Cindy Benedict
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yan Tang
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Vandana Mallaredy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Laurel Grisanti
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Sarah M Schumacher
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sudarsan Rajan
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - David Goukassian
- Zena & Michael A. Weiner Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Steven R Houser
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
17
|
Yang T, Li H, Chen T, Ren H, Shi P, Chen M. LncRNA MALAT1 Depressed Chemo-Sensitivity of NSCLC Cells through Directly Functioning on miR-197-3p/p120 Catenin Axis. Mol Cells 2019; 42:270-283. [PMID: 30841025 PMCID: PMC6449715 DOI: 10.14348/molcells.2019.2364] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
This study was aimed to explore if lncRNA MALAT1 would modify chemo-resistance of non-small cell lung cancer (NSCLC) cells by regulating miR-197-3p and p120 catenin (p120-ctn). Within this investigation, we totally recruited 326 lung cancer patients, and purchased 4 NSCLC cell lines of A549, H1299, SPC-A-1 and H460. Moreover, cisplatin, adriamycin, gefitinib and paclitaxel were arranged as chemotherapies, and half maximal inhibitory concentration (IC50) values were calculated to evaluate the chemo-resistance of the cells. Furthermore, mice models of NSCLC were also established to assess the impacts of MALAT1, miR-197-3p and p120-ctn on tumor growth. Our results indicated that MALAT1 and miR-197-3p were both over-expressed within NSCLC tissues and cells, when compared with normal tissues and cells (P < 0.05). The A549, H460, SPC-A-1 and SPC-A-1 displayed maximum resistances to cisplatin (IC50 = 15.70 μg/ml), adriamycin (IC50 = 5.58 μg/ml), gefitinib (96.82 μmol/L) and paclitaxel (141.97 nmol/L). Over-expression of MALAT1 and miR-197-3p, or under-expression of p120-ctn were associated with promoted viability and growth of the cancer cells (P < 0.05), and they could significantly strengthen the chemo-resistance of cancer cells (P < 0.05). MALAT1 Wt or p120-ctn Wt co-transfected with miR-197-3p mimic was observed with significantly reduced luciferase activity within NSCLC cells (P < 0.05). Finally, the NSCLC mice models were observed with larger tumor size and weight under circumstances of over-expressed MALAT1 and miR-197-3p, or under-expressed p120-ctn (P < 0.05). In conclusion, MALAT1 could alter chemo-resistance of NSCLC cells by targeting miR-197-3p and regulating p120-ctn expression, which might assist in improvement of chemo-therapies for NSCLC.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Base Sequence
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Catenins/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Drug Resistance, Neoplasm/genetics
- Epithelial-Mesenchymal Transition/drug effects
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Delta Catenin
Collapse
Affiliation(s)
- Tian Yang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061,
China
| | - Hong Li
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061,
China
| | - Tianjun Chen
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061,
China
| | - Hui Ren
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061,
China
| | - Puyu Shi
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061,
China
| | - Mingwei Chen
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061,
China
| |
Collapse
|
18
|
Xu Y, Su Z, Li J, Wang Q, Meng G, Zhang Y, Yang W, Zhang J, Gao P. Role of RNA-binding protein 5 in the diagnosis and chemotherapeutic response of lung cancer. Oncol Lett 2018; 17:2013-2019. [PMID: 30675268 DOI: 10.3892/ol.2018.9818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/04/2018] [Indexed: 01/16/2023] Open
Abstract
Lung cancer remains one of the leading causes of cancer-associated mortality in the world. Lung carcinogenesis is frequently associated with deletions or the loss of heterozygosity at the critical chromosomal region 3p21.3, where RNA-binding protein 5 (RBM5) is localized. RBM5 regulates cell growth, cell cycle progression and apoptosis in cell homeostasis. In the lungs, altered RBM5 protein expression leads to alterations in cell growth and apoptosis, with subsequent lung pathogenesis and varied responses to treatment in patients with lung cancer. Detection of RBM5 expression may be a tumor marker for diagnosis, prediction and treatment response in lung cancer, and may be developed as a potential therapeutic target for drug resistant lung cancer. This review discusses the most recent progress on the role of RBM5 in lung cancer.
Collapse
Affiliation(s)
- Yanling Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China.,Department of Geriatrics and General Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Zhenzhong Su
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Junyao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Guangping Meng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yu Zhang
- Department of Geriatrics and General Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Wen Yang
- Department of Geriatrics and General Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jie Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
19
|
TWIST1/miR-584/TUSC2 pathway induces resistance to apoptosis in thyroid cancer cells. Oncotarget 2018; 7:70575-70588. [PMID: 27661106 PMCID: PMC5342575 DOI: 10.18632/oncotarget.12129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/02/2016] [Indexed: 12/31/2022] Open
Abstract
TWIST1, a transcription factor, plays a pivotal role in cancer initiation and progression. Anaplastic thyroid carcinoma (ATC) is one of the deadliest human malignancies; TWIST1 is overexpressed in ATC and increases thyroid cancer cell survival, migration and invasion. The molecular mechanisms underlying the effects of TWIST1 are partially known. Here, using miRNome profiling of papillary thyroid cancer cells (TPC-1) ectopically expressing TWIST1, we identified miR-584. We showed that TWIST1 directly binds miR-584 using chromatin immunoprecipitation. Importantly, miR-584 was up-regulated in human ATC compared to papillary thyroid carcinoma (PTC) and normal thyroid samples. Overexpression of miR-584 in TPC cells induced resistance to apoptosis, whereas stable transfection of anti-miR-584 in TPC-TWIST1 and 8505C cells increased the sensitivity to apoptosis. Using bioinformatics programs, we identified TUSC2 (tumor suppressor candidate 2) as a novel target of miR-584. TUSC2 mRNA and protein levels were decreased in TPC miR-584 and increased in TPC-TWIST1 anti-miR-584 cells. Luciferase assays demonstrated direct targeting. Restored expression of TUSC2 rescued the inhibition of apoptosis induced by miR-584. Finally, qRT-PCR and immunohistochemical analysis showed that TUSC2 was down-regulated in ATC and PTC samples compared to normal thyroids. In conclusion, our study identified a novel TWIST1/miR-584/TUSC2 pathway that plays a role in resistance to apoptosis of thyroid cancer cells.
Collapse
|
20
|
Meraz IM, Majidi M, Cao X, Lin H, Li L, Wang J, Baladandayuthapani V, Rice D, Sepesi B, Ji L, Roth JA. TUSC2 Immunogene Therapy Synergizes with Anti-PD-1 through Enhanced Proliferation and Infiltration of Natural Killer Cells in Syngeneic Kras-Mutant Mouse Lung Cancer Models. Cancer Immunol Res 2018; 6:163-177. [PMID: 29339375 DOI: 10.1158/2326-6066.cir-17-0273] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/27/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022]
Abstract
Expression of the multikinase inhibitor encoded by the tumor suppressor gene TUSC2 (also known as FUS1) is lost or decreased in non-small cell lung carcinoma (NSCLC). TUSC2 delivered systemically by nanovesicles has mediated tumor regression in clinical trials. Because of the role of TUSC2 in regulating immune cells, we assessed TUSC2 efficacy on antitumor immune responses alone and in combination with anti-PD-1 in two Kras-mutant syngeneic mouse lung cancer models. TUSC2 alone significantly reduced tumor growth and prolonged survival compared with anti-PD-1. When combined, this effect was significantly enhanced, and correlated with a pronounced increases in circulating and splenic natural killer (NK) cells and CD8+ T cells, and a decrease in regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and T-cell checkpoint receptors PD-1, CTLA-4, and TIM-3. TUSC2 combined with anti-PD-1 induced tumor infiltrating more than NK and CD8+ T cells and fewer MDSCs and Tregs than each agent alone, both in subcutaneous tumor and in lung metastases. NK-cell depletion abrogated the antitumor effect and Th1-mediated immune response of this combination, indicating that NK cells mediate TUSC2/anti-PD-1 synergy. Release of IL15 and IL18 cytokines and expression of the IL15Rα chain and IL18R1 were associated with NK-cell activation by TUSC2. Immune response-related gene expression in the tumor microenvironment was altered by combination treatment. These data provide a rationale for immunogene therapy combined with immune checkpoint blockade in the treatment of NSCLC. Cancer Immunol Res; 6(2); 163-77. ©2018 AACR.
Collapse
Affiliation(s)
- Ismail M Meraz
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Mourad Majidi
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaobo Cao
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lerong Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - David Rice
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Boris Sepesi
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lin Ji
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jack A Roth
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
21
|
Cao X, Zhao Y, Wang J, Dai B, Gentile E, Lin J, Pu X, Ji L, Wu S, Meraz I, Majidi M, Roth JA. TUSC2 downregulates PD-L1 expression in non-small cell lung cancer (NSCLC). Oncotarget 2017; 8:107621-107629. [PMID: 29296193 PMCID: PMC5746095 DOI: 10.18632/oncotarget.22581] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022] Open
Abstract
Expression of the TUSC2 tumor-suppressor gene in TUSC2-deficient NSCLC cells decreased PD-L1 expression and inhibited mTOR activity. Overexpressing TUSC2 or treatment with rapamycin resulted in similar inhibition of PD-L1 expression. Both TUSC2 and rapamycin decreased p70 and SK6 phosphorylation, suggesting that TUSC2 and rapamycin share the same mTOR target. Microarray mRNA expression analysis using TUSC2-inducible H1299 showed that genes that negatively regulate the mTOR pathway were significantly upregulated by TUSC2 compared with control. The presence of IFN-γ significantly increased PD-L1 expression in lung cancer cell lines, but overexpressing TUSC2 in these cell lines prevented PD-L1 from increasing in the presence of IFN-γ. Taken together, these findings show that TUSC2 can decrease PD-L1 expression in lung cancer cells. This ability to modify the tumor microenvironment suggests that TUSC2 could be added to checkpoint inhibitors to improve the treatment of lung cancer.
Collapse
Affiliation(s)
- Xiaobo Cao
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yang Zhao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bingbing Dai
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emanuela Gentile
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Lin
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xingxiang Pu
- Department of Thoracic Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Lin Ji
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ismail Meraz
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mourad Majidi
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, Section of Thoracic Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
22
|
Lu X, Liu Z, Ning X, Huang L, Jiang B. The Long Noncoding RNA HOTAIR Promotes Colorectal Cancer Progression by Sponging miR-197. Oncol Res 2017; 26:473-481. [PMID: 29137688 PMCID: PMC7844719 DOI: 10.3727/096504017x15105708598531] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The long noncoding RNA HOX transcript antisense RNA (HOTAIR) has been found to be overexpressed in many human malignancies and involved in tumor progression and metastasis. Although the downstream target through which HOTAIR modulates tumor metastasis is not well known, evidence suggests that microRNA-197 (miR-197) might be involved in this event. In the present study, the significance of HOTAIR and miR-197 in the progression of colorectal cancer was detected in vitro and in vivo. We found that HOTAIR expression was significantly increased in colorectal cancer cells and tissues. In contrast, the expression of miR-197 was obviously decreased. We further demonstrated that HOTAIR knockdown promoted apoptosis and inhibited cell proliferation, migration, and invasion in vitro and in vivo. Moreover, HOTAIR modulated the progression of colorectal cancer by competitively binding miR-197. Taken together, our study has identified a novel pathway through which HOTAIR exerts its oncogenic role and provided a molecular basis for potential applications of HOTAIR in the prognosis and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Xinyang Lu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, P.R. China
| | - Zhiqiang Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, P.R. China
| | - Xiaofei Ning
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, P.R. China
| | - Lunhua Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, P.R. China
| | - Biao Jiang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining, P.R. China
| |
Collapse
|
23
|
Abstract
Gene therapy was originally conceived to treat monogenic diseases. The replacement of a defective gene with a functional gene can theoretically cure the disease. In cancer, multiple genetic defects are present and the molecular profile changes during the course of the disease, making the replacement of all defective genes impossible. To overcome these difficulties, various gene therapy strategies have been adopted, including immune stimulation, transfer of suicide genes, inhibition of driver oncogenes, replacement of tumor-suppressor genes that could mediate apoptosis or anti-angiogenesis, and transfer of genes that enhance conventional treatments such as radiotherapy and chemotherapy. Some of these strategies have been tested successfully in non-small-cell lung cancer patients and the results of laboratory studies and clinical trials are reviewed herein.
Collapse
Affiliation(s)
- Humberto Lara-Guerra
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
Udenwobele DI, Su RC, Good SV, Ball TB, Varma Shrivastav S, Shrivastav A. Myristoylation: An Important Protein Modification in the Immune Response. Front Immunol 2017; 8:751. [PMID: 28713376 PMCID: PMC5492501 DOI: 10.3389/fimmu.2017.00751] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/13/2017] [Indexed: 01/24/2023] Open
Abstract
Protein N-myristoylation is a cotranslational lipidic modification specific to the alpha-amino group of an N-terminal glycine residue of many eukaryotic and viral proteins. The ubiquitous eukaryotic enzyme, N-myristoyltransferase, catalyzes the myristoylation process. Precisely, attachment of a myristoyl group increases specific protein–protein interactions leading to subcellular localization of myristoylated proteins with its signaling partners. The birth of the field of myristoylation, a little over three decades ago, has led to the understanding of the significance of protein myristoylation in regulating cellular signaling pathways in several biological processes especially in carcinogenesis and more recently immune function. This review discusses myristoylation as a prerequisite step in initiating many immune cell signaling cascades. In particular, we discuss the hitherto unappreciated implication of myristoylation during myelopoiesis, innate immune response, lymphopoiesis for T cells, and the formation of the immunological synapse. Furthermore, we discuss the role of myristoylation in inducing the virological synapse during human immunodeficiency virus infection as well as its clinical implication. This review aims to summarize existing knowledge in the field and to highlight gaps in our understanding of the role of myristoylation in immune function so as to further investigate into the dynamics of myristoylation-dependent immune regulation.
Collapse
Affiliation(s)
- Daniel Ikenna Udenwobele
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Ruey-Chyi Su
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Sara V Good
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Terry Blake Ball
- JC Wilt Infectious Diseases Research Institute, National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shailly Varma Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,VastCon Inc., Winnipeg, MB, Canada
| | - Anuraag Shrivastav
- Department of Biology, University of Winnipeg, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
25
|
Nucleic acid combinations: A new frontier for cancer treatment. J Control Release 2017; 256:153-169. [DOI: 10.1016/j.jconrel.2017.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022]
|
26
|
Rimkus T, Sirkisoon S, Harrison A, Lo HW. Tumor suppressor candidate 2 (TUSC2, FUS-1) and human cancers. DISCOVERY MEDICINE 2017; 23:325-330. [PMID: 28715648 PMCID: PMC5808457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tumor suppressor candidate 2 (TUSC2, also known as FUS1) was identified in 2000 as a candidate tumor suppressor gene located in a region on chromosome 3p21.3 that is homozygously deleted in some lung and breast cancers. The deletion is rare in lung and breast cancers, but is frequent in malignant pleural mesothelioma. Evidence to date indicates that TUSC2 behaves as a tumor suppressor in lung cancer; however, its role as a tumor suppressor for other tumor types has not been fully established. Loss of TUSC2 expression at the mRNA and protein levels has been reported in various cancers. While the mechanisms underlying the loss are still not well understood, several microRNAs have been reported to downregulate TUSC2 expression. TUSC2 elicits its anti-tumor effects through regulating G1 cell cycle progression, apoptosis, calcium homeostasis, gene expression, and the activity of various protein tyrosine kinases and Ser/Thr kinases, albeit the precise mechanisms that TUSC2 utilizes to regulate these cellular processes and signaling molecules are still elusive. TUSC2 restoration has been exploited as an anti-cancer therapy in various cancers in preclinical models, and clinically in patients with lung cancer. The first-in-human phase I trial demonstrated desirable safety outcomes. Phase I/II trials are being conducted to evaluate the efficacy of combining TUSC2-nanoparticles with erlotinib, an FDA-approved EGFR inhibitor. This review summarizes recent findings that advanced our understanding of TUSC2 as a novel tumor suppressor and a therapeutic opportunity for treating TUSC2-deficient cancers.
Collapse
Affiliation(s)
- Tadas Rimkus
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sherona Sirkisoon
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Alexandra Harrison
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Wake Forest Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
27
|
Wang YW, Cheng HL, Ding YR, Chou LH, Chow NH. EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:199-211. [PMID: 28408326 DOI: 10.1016/j.bbcan.2017.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/15/2017] [Accepted: 04/08/2017] [Indexed: 02/09/2023]
Abstract
The epithelial membrane protein genes 1, 2, and 3 (EMP1, EMP2, and EMP3) belong to the peripheral myelin protein 22-kDa (PMP22) gene family, which consists of at least seven members: PMP22, EMP1, EMP2, EMP3, PERP, brain cell membrane protein 1, and MP20. This review addresses the structural and functional features of EMPs, detailing their tissue distribution and functions in the human body, their expression pattern in a variety of tumors, and highlighting the underlying mechanisms involved in carcinogenesis. The implications in cancer biology, patient prognosis prediction, and potential application in disease therapy are discussed. For example, EMP1 was reported to be a biomarker of gefitinib resistance in lung cancer and contributes to prednisolone resistance in acute lymphoblastic leukemia patients. EMP2 functions as an oncogene in human endometrial and ovarian cancers; however, characteristics of EMP2 in urothelial cancer fulfill the criteria of a suppressor gene. Of particular interest, EMP3 overexpression in breast cancer is significantly related to strong HER-2 expression. Co-expression of HER-2 and EMP3 is the most important indicator of progression-free and metastasis-free survival for patients with urothelial carcinoma of the upper urinary tract. Altogether, discovery of pharmacological inhibitors and/or regulators of EMP protein activity could open novel strategies for enhanced therapy against EMP-mediated human diseases.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Ling Cheng
- National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ya-Rou Ding
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lien-Hsuan Chou
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Nan-Haw Chow
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
28
|
Wang DD, Chen X, Yu DD, Yang SJ, Shen HY, Sha HH, Zhong SL, Zhao JH, Tang JH. miR-197: A novel biomarker for cancers. Gene 2016; 591:313-9. [PMID: 27320730 DOI: 10.1016/j.gene.2016.06.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) are small noncoding RNAs that could regulate post-transcription level through binding to 3' untranslated region (3'UTR) of target messenger RNAs (mRNAs), which were reported to be related with the incidence and development of diverse neoplasms. Among them, miR-197 was confirmed to play a vital role of oncogene or anti-oncogene in different cancers via targeting key tumorigenic or tumor-suppressive genes. Additionally, miR-197 had extensively been studied in carcinogenesis progression of cancers through various mechanisms, including apoptosis, proliferation, angiogenesis, metastasis, drug resistance and tumor suppressor, and also played a role in prognosis of cancers. In this review, we summarized the roles of miR-197 in cancers and considered it as a potentially novel biomarker for different cancers, offering an alternatively secure and effective tool in molecular targeting cancer treatment.
Collapse
Affiliation(s)
- Dan-Dan Wang
- The First Clinical School of Nanjing Medical University, Nanjing 210009, China; The Forth Clinical School of Nanjing Medical University, Nanjing 210009, China
| | - Xiu Chen
- The Forth Clinical School of Nanjing Medical University, Nanjing 210009, China; Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - Dan-Dan Yu
- The First Clinical School of Nanjing Medical University, Nanjing 210009, China; Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - Su-Jin Yang
- The Forth Clinical School of Nanjing Medical University, Nanjing 210009, China; Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - Hong-Yu Shen
- The Forth Clinical School of Nanjing Medical University, Nanjing 210009, China; Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - Huan-Huan Sha
- The Forth Clinical School of Nanjing Medical University, Nanjing 210009, China; Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - Shan-Liang Zhong
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - Jian-Hua Zhao
- Center of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - Jin-Hai Tang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China.
| |
Collapse
|
29
|
Mitochondria, calcium, and tumor suppressor Fus1: At the crossroad of cancer, inflammation, and autoimmunity. Oncotarget 2016; 6:20754-72. [PMID: 26246474 PMCID: PMC4673227 DOI: 10.18632/oncotarget.4537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/27/2015] [Indexed: 12/12/2022] Open
Abstract
Mitochondria present a unique set of key intracellular functions such as ATP synthesis, production of reactive oxygen species (ROS) and Ca2+ buffering. Mitochondria both encode and decode Ca2+ signals and these interrelated functions have a direct impact on cell signaling and metabolism. High proliferative potential is a key energy-demanding feature shared by cancer cells and activated T lymphocytes. Switch of a metabolic state mediated by alterations in mitochondrial homeostasis plays a fundamental role in maintenance of the proliferative state. Recent studies show that tumor suppressors have the ability to affect mitochondrial homeostasis controlling both cancer and autoimmunity. Herein, we discuss established and putative mechanisms of calcium–dependent regulation of both T cell and tumor cell activities. We use the mitochondrial protein Fus1 as a case of tumor suppressor that controls immune response and tumor growth via maintenance of mitochondrial homeostasis. We focus on the regulation of mitochondrial Ca2+ handling as a key function of Fus1 and highlight the mechanisms of a crosstalk between Ca2+ accumulation and mitochondrial homeostasis. Given the important role of Ca2+ signaling, mitochondrial Ca2+ transport and ROS production in the activation of NFAT and NF-κB transcription factors, we outline the importance of Fus1 activities in this context.
Collapse
|
30
|
Pastorkova Z, Skarda J, Andel J. The role of microRNA in metastatic processes of non-small cell lung carcinoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:343-57. [PMID: 27108604 DOI: 10.5507/bp.2016.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND MicroRNAs are small non-coding one-stranded RNA molecules that play an important role in the post-transcriptional regulation of genes. Bioinformatic predictions indicate that each miRNA can regulate hundreds of target genes. MicroRNA expression can be associated with various cellular processes leading to the metastasis of malignant tumours including non-small cell lung carcinoma. This review summarizes current knowledge on the role of microRNAs in NSCLC metastasis to the brain and lymph nodes. METHODS A search of the NCBI/PubMed database for publications on expression levels and the mechanisms of microRNA action in NSCLC metastasis. RESULTS AND CONCLUSION Dysregulation of microRNAs in NSCLC can be associated with brain and lymph node metastasis. There are differences in microRNA expression profiling between NSCLC with and without metastases but it is currently not possible to reliably predict the site of metastasis in NSCLC. Based on data from RNAmicroarrays, bioinformatics analysis is able to predict the target genes of highlighted microRNAs, providing us with complex information about cancer cell features such as enhanced proliferation, migration and invasion. Such microRNAs may then be knocked-down using siRNAs or substituted with miRNA mimics. RNA microarray profiling may thus be a useful tool to select up- or down-regulated microRNAs. A number of authors suggest that microRNAs could serve as biomarkers and therapeutic targets in the treatment of NSCLC metastasis.
Collapse
Affiliation(s)
- Zuzana Pastorkova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Jozef Skarda
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Jozef Andel
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
31
|
The pseudogene TUSC2P promotes TUSC2 function by binding multiple microRNAs. Nat Commun 2015; 5:2914. [PMID: 24394498 PMCID: PMC3896787 DOI: 10.1038/ncomms3914] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/11/2013] [Indexed: 01/16/2023] Open
Abstract
Various non-coding regions of the genome, once presumed to be ‘junk’ DNA, have recently been found to be transcriptionally active. In particular, pseudogenes are now known to have important biological roles. Here we report that transcripts of the two tumour suppressor candidate-2 pseudogenes (TUSC2P), found on chromosomes X and Y, are homologous to the 3′-UTR of their corresponding protein coding transcript, TUSC2. TUSC2P and the TUSC2 3′-UTR share many common miRNA-binding sites, including miR-17, miR-93, miR-299-3p, miR-520a, miR-608 and miR-661. We find that ectopic expression of TUSC2P and the TUSC2 3′-UTR inhibits cell proliferation, survival, migration, invasion and colony formation, and increases tumour cell death. By interacting with endogenous miRNAs, TUSC2P and TUSC2 3′-UTR arrest the functions of these miRNAs, resulting in increased translation of TUSC2. The TUSC2P and TUSC2 3′-UTR could thus be used as combinatorial miRNA inhibitors and might have clinical applications. Non-coding RNAs have recently emerged as crucial regulators of gene expression. Here Rutnam et al. identify a pseudogene complementary to the 3′-UTR of the TUSC2 tumour suppressor that regulates TUSC2 levels by acting as a decoy for endogenous microRNAs and thereby inhibits tumorigenesis.
Collapse
|
32
|
Pastuszak-Lewandoska D, Kordiak J, Migdalska-Sęk M, Czarnecka KH, Antczak A, Górski P, Nawrot E, Kiszałkiewicz JM, Domańska D, Brzeziańska-Lasota E. Quantitative analysis of mRNA expression levels and DNA methylation profiles of three neighboring genes: FUS1, NPRL2/G21 and RASSF1A in non-small cell lung cancer patients. Respir Res 2015; 16:76. [PMID: 26112163 PMCID: PMC4484633 DOI: 10.1186/s12931-015-0230-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/05/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Tumor suppressor gene (TSG) inactivation plays a crucial role in carcinogenesis. FUS1, NPRL2/G21 and RASSF1A are TSGs from LUCA region at 3p21.3, a critical chromosomal region in lung cancer development. The aim of the study was to analyze and compare the expression levels of these 3 TSGs in NSCLC, as well as in macroscopically unchanged lung tissue surrounding the primary lesion, and to look for the possible epigenetic mechanism of TSG inactivation via gene promoter methylation. METHODS Expression levels of 3 TSGs and 2 DNA methyltransferases, DNMT1 and DNMT3B, were assessed using real-time PCR method (qPCR) in 59 primary non-small cell lung tumors and the matched macroscopically unchanged lung tissue samples. Promoter methylation status of TSGs was analyzed using methylation-specific PCRs (MSP method) and Methylation Index (MI) value was calculated for each gene. RESULTS The expression of all three TSGs were significantly different between NSCLC subtypes: RASSF1A and FUS1 expression levels were significantly lower in squamous cell carcinoma (SCC), and NPRL2/G21 in adenocarcinoma (AC). RASSF1A showed significantly lower expression in tumors vs macroscopically unchanged lung tissues. Methylation frequency was 38-76%, depending on the gene. The highest MI value was found for RASSF1A (52%) and the lowest for NPRL2/G21 (5%). The simultaneous decreased expression and methylation of at least one RASSF1A allele was observed in 71% tumor samples. Inverse correlation between gene expression and promoter methylation was found for FUS1 (rs = -0.41) in SCC subtype. Expression levels of DNMTs were significantly increased in 75-92% NSCLCs and were significantly higher in tumors than in normal lung tissue. However, no correlation between mRNA expression levels of DNMTs and DNA methylation status of the studied TSGs was found. CONCLUSIONS The results indicate the potential role of the studied TSGs in the differentiation of NSCLC histopathological subtypes. The significant differences in RASSF1A expression levels between NSCLC and macroscopically unchanged lung tissue highlight its possible diagnostic role in lung cancer in situ recognition. High percentage of lung tumor samples with simultaneous RASSF1A decreased expression and gene promoter methylation indicates its epigenetic silencing. However, DNMT overexpression doesn't seem to be a critical determinate of its promoter hypermethylation.
Collapse
Affiliation(s)
- Dorota Pastuszak-Lewandoska
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland.
| | - Jacek Kordiak
- Department of Chest Surgery, General and Oncological Surgery, University Hospital No. 2, Medical University of Lodz, Lodz, Poland.
| | - Monika Migdalska-Sęk
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland.
| | - Karolina H Czarnecka
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland.
| | - Adam Antczak
- Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland.
| | - Paweł Górski
- Department of Pneumology and Allergology, Medical University of Lodz, Lodz, Poland.
| | - Ewa Nawrot
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland.
| | - Justyna M Kiszałkiewicz
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland.
| | - Daria Domańska
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland.
| | - Ewa Brzeziańska-Lasota
- Department of Molecular Bases of Medicine, Medical University of Lodz, Pomorska 251, C-5, 92-213, Lodz, Poland.
| |
Collapse
|
33
|
XIN JUN, ZHANG XUEKUI, XIN DEYOU, LI XIANFENG, SUN DEKE, MA YUEYE, TIAN LIQIANG. FUS1 acts as a tumor-suppressor gene by upregulating miR-197 in human glioblastoma. Oncol Rep 2015; 34:868-76. [DOI: 10.3892/or.2015.4069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/14/2015] [Indexed: 11/05/2022] Open
|
34
|
Exogenous Restoration of TUSC2 Expression Induces Responsiveness to Erlotinib in Wildtype Epidermal Growth Factor Receptor (EGFR) Lung Cancer Cells through Context Specific Pathways Resulting in Enhanced Therapeutic Efficacy. PLoS One 2015; 10:e0123967. [PMID: 26053020 PMCID: PMC4460038 DOI: 10.1371/journal.pone.0123967] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/29/2015] [Indexed: 11/19/2022] Open
Abstract
Expression of the tumor suppressor gene TUSC2 is reduced or absent in most lung cancers and is associated with worse overall survival. In this study, we restored TUSC2 gene expression in several wild type EGFR non-small cell lung cancer (NSCLC) cell lines resistant to the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib and analyzed their sensitivity to erlotinib in vitro and in vivo. A significant inhibition of cell growth and colony formation was observed with TUSC2 transient and stable expression. TUSC2-erlotinib cooperativity in vitro could be reproduced in vivo in subcutaneous tumor growth and lung metastasis formation lung cancer xenograft mouse models. Combination treatment with intravenous TUSC2 nanovesicles and erlotinib synergistically inhibited tumor growth and metastasis, and increased apoptotic activity. High-throughput qRT-PCR array analysis enabling multi-parallel expression profile analysis of eighty six receptor and non-receptor tyrosine kinase genes revealed a significant decrease of FGFR2 expression level, suggesting a potential role of FGFR2 in TUSC2-enhanced sensitivity to erlotinib. Western blots showed inhibition of FGFR2 by TUSC2 transient transfection, and marked increase of PARP, an apoptotic marker, cleavage level after TUSC2-erlotinb combined treatment. Suppression of FGFR2 by AZD4547 or gene knockdown enhanced sensitivity to erlotinib in some but not all tested cell lines. TUSC2 inhibits mTOR activation and the latter cell lines were responsive to the mTOR inhibitor rapamycin combined with erlotinib. These results suggest that TUSC2 restoration in wild type EGFR NSCLC may overcome erlotinib resistance, and identify FGFR2 and mTOR as critical regulators of this activity in varying cellular contexts. The therapeutic activity of TUSC2 could extend the use of erlotinib to lung cancer patients with wildtype EGFR.
Collapse
|
35
|
Xing Y, Hou J, Guo T, Zheng S, Zhou C, Huang H, Chen Y, Sun K, Zhong T, Wang J, Li H, Wang T. microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic-ischemic conditions in vitro. Stem Cell Res Ther 2014; 5:130. [PMID: 25418617 PMCID: PMC4446090 DOI: 10.1186/scrt520] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 11/12/2014] [Indexed: 12/18/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) transplantation has been demonstrated to be an effective strategy for the treatment of cardiovascular disease. However, the low survival rate of MSCs at local diseased tissue reduces the therapeutic efficacy. We therefore investigated the influence of MicroRNA-378 (miR-378) transfection on MSCs survival and vascularization under hypoxic-ischemic condition in vitro. Methods MSCs were isolated from bone marrow of Sprague–Dawley rats and cultured in vitro. The third passage of MSCs were divided into the miR-378 group and control group. For the miR-378 group, cells were transfected with miR-378 mimic. Both groups experienced exposure to hypoxia (1% O2) and serum deprivation for 24 hours, using normoxia (20% O2) as a negative control during the process. After 24 hours of reoxygenation (20% O2), cell proliferation and apoptosis were evaluated. Expressions of apoptosis and angiogenesis related genes were detected. Both groups were further co-cultured with human umbilical vein endothelial cells to promote vascular differentiation for another 6 hours. Vascular density was assessed thereafter. Results Compared with the control group, MSCs transfected with miR-378 showed more rapid growth. Their proliferation rates were much higher at 72 h and 96 h under hypoxic condition (257.33% versus 246.67%, P <0.01; 406.84% versus 365.39%, P <0.05). Cell apoptosis percentage in the miR-378 group was significantly declined under normoxic and hypoxic condition (0.30 ± 0.10% versus 0.50 ± 0.10%, P <0.05; 0.60 ± 0.40% versus 1.70 ± 0.20%, P <0.01). The miR-378 group formed a larger number of vascular branches on matrigel. BCL2 level was decreased accompanied with an upregulated expression of BAX in the two experimental groups under the hypoxic environment. BAX expression was reduced in the miR-378 group under the hypoxic environment. In the miR-378 group, there was a decreased expression of tumor necrosis factor-α on protein level and a reduction of TUSC-2 under normoxic environment. Their expressions were both downregulated under hypoxic environment. For the angiogenesis related genes, enhanced expressions of vascular endothelial growth factorα, platelet derived growth factor-β and transforming growth factor-β1 could be detected both in normoxic and hypoxic-ischemic conditions. Conclusion MiR-378 transfection could effectively promote MSCs survival and vascularization under hypoxic-ischemic condition in vitro.
Collapse
|
36
|
Ricciuti B, Mecca C, Crinò L, Baglivo S, Cenci M, Metro G. Non-coding RNAs in lung cancer. Oncoscience 2014; 1:674-705. [PMID: 25593996 PMCID: PMC4278269 DOI: 10.18632/oncoscience.98] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/15/2014] [Indexed: 12/14/2022] Open
Abstract
The discovery that protein-coding genes represent less than 2% of all human genome, and the evidence that more than 90% of it is actively transcribed, changed the classical point of view of the central dogma of molecular biology, which was always based on the assumption that RNA functions mainly as an intermediate bridge between DNA sequences and protein synthesis machinery. Accumulating data indicates that non-coding RNAs are involved in different physiological processes, providing for the maintenance of cellular homeostasis. They are important regulators of gene expression, cellular differentiation, proliferation, migration, apoptosis, and stem cell maintenance. Alterations and disruptions of their expression or activity have increasingly been associated with pathological changes of cancer cells, this evidence and the prospect of using these molecules as diagnostic markers and therapeutic targets, make currently non-coding RNAs among the most relevant molecules in cancer research. In this paper we will provide an overview of non-coding RNA function and disruption in lung cancer biology, also focusing on their potential as diagnostic, prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Biagio Ricciuti
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | | | - Lucio Crinò
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Sara Baglivo
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Matteo Cenci
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Giulio Metro
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| |
Collapse
|
37
|
Stewart DJ, Nunez MI, Jelinek J, Hong D, Gupta S, Aldaz M, Issa JP, Kurzrock R, Wistuba II. Impact of decitabine on immunohistochemistry expression of the putative tumor suppressor genes FHIT, WWOX, FUS1 and PTEN in clinical tumor samples. Clin Epigenetics 2014; 6:13. [PMID: 25024751 PMCID: PMC4094901 DOI: 10.1186/1868-7083-6-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Since tumor suppressor gene function may be lost through hypermethylation, we assessed whether the demethylating agent decitabine could increase tumor suppressor gene expression clinically. For fragile histidine triad (FHIT), WW domain-containing oxidoreductase (WWOX), fused in sarcoma-1 (FUS1) and phosphatase and tensin homolog (PTEN), immunohistochemistry scores from pre- and post-decitabine tumor biopsies (25 patients) were correlated with methylation of the long interspersed nuclear element-1 (LINE-1) repetitive DNA element (as a surrogate for global DNA methylation) and with tumor regression. RESULTS With negative staining pre-decitabine (score = 0), the number of patients converting to positive staining post-decitabine was 1 of 1 for FHIT, 3 of 6 for WWOX, 2 of 3 for FUS1 and 1 of 10 for PTEN. In tumors with low pre-decitabine tumor suppressor gene scores (≤150), expression was higher post-treatment in 8 of 8 cases for FHIT (P = 0.014), 7 of 17 for WWOX (P = 0.0547), 7 of 12 for FUS1 (P = 0.0726), and 1 of 16 for PTEN (P = 0.2034). If FHIT, WWOX and FUS1 were considered together, median pre- versus post-decitabine scores were 60 versus 100 (P = 0.0002). Overall, tumor suppressor gene expression change did not correlate with LINE-1 demethylation, although tumors converting from negative to positive had a median decrease in LINE-1 methylation of 24%, compared to 6% in those not converting (P = 0.069). Five of 15 fully evaluable patients had reductions in tumor diameter (range 0.2% to 33.4%). Of these, three had simultaneous increases in three tumor suppressor genes (including the two patients with the greatest tumor regression) compared to 2 of 10 with tumor growth (P = 0.25). CONCLUSIONS In tumors with low tumor suppressor gene expression, decitabine may be associated with increased expression of the tumor suppressor genes FHIT, FUS1, and WWOX, but not PTEN.
Collapse
Affiliation(s)
- David J Stewart
- University of Ottawa, 501 Smyth Rd, Ottawa, ON K1H 8 L6, Canada
| | - Maria I Nunez
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research and Molecular Biology, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - David Hong
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Sanjay Gupta
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Marcelo Aldaz
- UT MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX 78957, USA
| | - Jean-Pierre Issa
- Fels Institute for Cancer Research and Molecular Biology, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Razelle Kurzrock
- University of California San Diego, 3855 Health Sciences Dr, La Jolla, CA 92093, USA
| | - Ignacio I Wistuba
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
38
|
Synergistic effects of eukaryotic coexpression plasmid carrying LKB1 and FUS1 genes on lung cancer in vitro and in vivo. J Cancer Res Clin Oncol 2014; 140:895-907. [DOI: 10.1007/s00432-014-1607-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/02/2014] [Indexed: 12/24/2022]
|
39
|
Lung cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
40
|
Meng J, Majidi M, Fang B, Ji L, Bekele BN, Minna JD, Roth JA. The tumor suppressor gene TUSC2 (FUS1) sensitizes NSCLC to the AKT inhibitor MK2206 in LKB1-dependent manner. PLoS One 2013; 8:e77067. [PMID: 24146957 PMCID: PMC3798310 DOI: 10.1371/journal.pone.0077067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/29/2013] [Indexed: 12/20/2022] Open
Abstract
TUSC2-defective gene expression is detected in the majority of lung cancers and is associated with worse overall survival. We analyzed the effects of TUSC2 re-expression on tumor cell sensitivity to the AKT inhibitor, MK2206, and explored their mutual signaling connections, in vitro and in vivo. TUSC2 transient expression in three LKB1-defective non-small cell lung cancer (NSCLC) cell lines combined with MK2206 treatment resulted in increased repression of cell viability and colony formation, and increased apoptotic activity. In contrast, TUSC2 did not affect the response to MK2206 treatment for two LKB1-wild type NSCLC cell lines. In vivo, TUSC2 systemic delivery, by nanoparticle gene transfer, combined with MK2206 treatment markedly inhibited growth of tumors in a human LKB1-defective H322 lung cancer xenograft mouse model. Biochemical analysis showed that TUSC2 transient expression in LKB1-defective NSCLC cells significantly stimulated AMP-activated protein kinase (AMPK) phosphorylation and enzymatic activity. More importantly, AMPK gene knockdown abrogated TUSC2-MK2206 cooperation, as evidenced by reduced sensitivity to the combined treatment. Together, TUSC2 re-expression and MK2206 treatment was more effective in inhibiting the phosphorylation and kinase activities of AKT and mTOR proteins than either single agent alone. In conclusion, these findings support the hypothesis that TUSC2 expression status is a biological variable that potentiates MK2206 sensitivity in LKB1-defective NSCLC cells, and identifies the AMPK/AKT/mTOR signaling axis as an important regulator of this activity.
Collapse
Affiliation(s)
- Jieru Meng
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| | - Mourad Majidi
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Bingliang Fang
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Lin Ji
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - B. Nebiyou Bekele
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research and Simmons Cancer Center, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Jack A. Roth
- Section of Thoracic Molecular Oncology, Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
41
|
Han L, Ravoori M, Wu G, Sakai R, Yan S, Singh S, Xu K, Roth JA, Ji L, Kundra V. Somatostatin Receptor Type 2–Based Reporter Expression after Plasmid-Based in Vivo Gene Delivery to Non–Small Cell Lung Cancer. Mol Imaging 2013; 12:7290.2013.00060. [DOI: 10.2310/7290.2013.00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Lin Han
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Murali Ravoori
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Guanglin Wu
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ryo Sakai
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shaoyu Yan
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sheela Singh
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kai Xu
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jack A. Roth
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lin Ji
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vikas Kundra
- From the Departments of Experimental Diagnostic Imaging, Thoracic and Cardiovascular Surgery, and Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
42
|
Han L, Ravoori M, Wu G, Sakai R, Yan S, Singh S, Xu K, Roth JA, Ji L, Kundra V. Somatostatin receptor type 2-based reporter expression after plasmid-based in vivo gene delivery to non-small cell lung cancer. Mol Imaging 2013; 12:1-10. [PMID: 23962694 PMCID: PMC4103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
Plasmids tend to have much lower expression than viruses. Gene expression after systemic administration of plasmid vectors has not been assessed using somatostatin receptor type 2 (SSTR2)-based reporters. The purpose of this work was to identify gene expression in non-small cell lung cancer (NSCLC) after systemic liposomal nanoparticle delivery of plasmid containing SSTR2-based reporter gene. In vitro, Western blotting was performed after transient transfection with the plasmid cytomegalovirus (CMV)-SSTR2, CMV-TUSC2-IRES-SSTR2, or CMV-TUSC2. SSTR2 is the reporter gene, and TUSC2 is a therapeutic gene. Mice with A549 NSCLC lung tumors were injected intravenously with CMV-SSTR2, CMV-TUSC2-IRES-SSTR2, or CMV-TUSC2 plasmids in DOTAP:cholesterol-liposomal nanoparticles. Two days later, mice were injected intravenously with 111In-octreotide. The next day, biodistribution was performed. The experiment was repeated including single-photon emission computed tomography/computed tomography (SPECT/CT). Immunohistochemistry was performed. In vitro, SSTR2 expression was similar in cells transfected with CMV-SSTR2 or CMV-TUSC2-IRES-SSTR2. TUSC2 expression was similar in cells transfected with CMV-TUSC2 or CMV-TUSC2-SSTR2. Biodistribution demonstrated significantly greater 111In-octreotide uptake in tumors from mice injected with CMV-TUSC2-IRES-SSTR2 or CMV-SSTR2 than the control plasmid, CMV-TUSC2 (p < .05). Gamma-camera and SPECT/CT imaging illustrated SSTR2 expression in tumors in mice injected with CMV-TUSC2-IRES-SSTR2 or CMV-SSTR2 versus background with control plasmid. Immunohistochemistry corresponded with imaging. SSTR2-based reporter imaging can visualize gene expression in lung tumors after systemic liposomal nanoparticle delivery of plasmid containing SSTR2-based reporter gene or SSTR2 linked to a second therapeutic gene, such as TUSC2.
Collapse
MESH Headings
- Animals
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Line, Tumor
- Cytomegalovirus/genetics
- Female
- Genes, Reporter
- Genetic Therapy
- Genetic Vectors
- Heterografts
- Humans
- Indium Radioisotopes
- Liposomes
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/therapy
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Octreotide/analogs & derivatives
- Plasmids
- Radiopharmaceuticals
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Tomography, Emission-Computed, Single-Photon/methods
- Tumor Cells, Cultured
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Lin Han
- Department of Experimental Diagnostic Imaging
| | | | - Guanglin Wu
- Department of Thoracic and Cardiovascular Surgery
| | - Ryo Sakai
- Department of Thoracic and Cardiovascular Surgery
| | - Shaoyu Yan
- Department of Thoracic and Cardiovascular Surgery
| | | | - Kai Xu
- Department of Thoracic and Cardiovascular Surgery
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery
| | - Lin Ji
- Department of Thoracic and Cardiovascular Surgery
| | - Vikas Kundra
- Department of Experimental Diagnostic Imaging
- Department of Diagnostic Radiology
| |
Collapse
|
43
|
Mahdipour E. Regulatory crosstalk between Hox genes and miRNAs during angiogenesis. Microvasc Res 2013; 87:1-6. [DOI: 10.1016/j.mvr.2013.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 02/24/2013] [Accepted: 02/28/2013] [Indexed: 11/28/2022]
|
44
|
Lando M, Wilting SM, Snipstad K, Clancy T, Bierkens M, Aarnes EK, Holden M, Stokke T, Sundfør K, Holm R, Kristensen GB, Steenbergen RDM, Lyng H. Identification of eight candidate target genes of the recurrent 3p12-p14 loss in cervical cancer by integrative genomic profiling. J Pathol 2013; 230:59-69. [PMID: 23335387 DOI: 10.1002/path.4168] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/23/2012] [Accepted: 12/31/2012] [Indexed: 12/12/2022]
Abstract
The pathogenetic role, including its target genes, of the recurrent 3p12-p14 loss in cervical cancer has remained unclear. To determine the onset of the event during carcinogenesis, we used microarray techniques and found that the loss was the most frequent 3p event, occurring in 61% of 92 invasive carcinomas, in only 2% of 43 high-grade intraepithelial lesions (CIN2/3), and in 33% of 6 CIN3 lesions adjacent to invasive carcinomas, suggesting a role in acquisition of invasiveness or early during the invasive phase. We performed an integrative DNA copy number and expression analysis of 77 invasive carcinomas, where all genes within the recurrent region were included. We selected eight genes, THOC7, PSMD6, SLC25A26, TMF1, RYBP, SHQ1, EBLN2, and GBE1, which were highly down-regulated in cases with loss, as confirmed at the protein level for RYBP and TMF1 by immunohistochemistry. The eight genes were subjected to network analysis based on the expression profiles, revealing interaction partners of proteins encoded by the genes that were coordinately regulated in tumours with loss. Several partners were shared among the eight genes, indicating crosstalk in their signalling. Gene ontology analysis showed enrichment of biological processes such as apoptosis, proliferation, and stress response in the network and suggested a relationship between down-regulation of the eight genes and activation of tumourigenic pathways. Survival analysis showed prognostic impact of the eight-gene signature that was confirmed in a validation cohort of 74 patients and was independent of clinical parameters. These results support the role of the eight candidate genes as targets of the 3p12-p14 loss in cervical cancer and suggest that the strong selection advantage of the loss during carcinogenesis might be caused by a synergetic effect of several tumourigenic processes controlled by these targets.
Collapse
Affiliation(s)
- Malin Lando
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Uzhachenko R, Issaeva N, Boyd K, Ivanov SV, Carbone DP, Ivanova AV. Tumour suppressor Fus1 provides a molecular link between inflammatory response and mitochondrial homeostasis. J Pathol 2012; 227:456-69. [PMID: 22513871 DOI: 10.1002/path.4039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/04/2012] [Accepted: 04/07/2012] [Indexed: 02/04/2023]
Abstract
Fus1, encoded by a 3p21.3 tumour suppressor gene, is down-regulated, mutated or lost in the majority of inflammatory thoracic malignancies. The mitochondrial localization of Fus1 stimulated us to investigate how Fus1 modulates inflammatory response and mitochondrial function in a mouse model of asbestos-induced peritoneal inflammation. Asbestos treatment resulted in a decreased Fus1 expression in wild-type (WT) peritoneal immune cells, suggesting that asbestos exposure may compromise the Fus1-mediated inflammatory response. Untreated Fus1(-/-) mice had an ~eight-fold higher proportion of peritoneal granulocytes than Fus1(+/+) mice, pointing at ongoing chronic inflammation. Fus1(-/-) mice exhibited a perturbed inflammatory response to asbestos, reflected in decreased immune organ weight and peritoneal fluid protein concentration, along with an increased proportion of peritoneal macrophages. Fus1(-/-) immune cells showed augmented asbestos-induced activation of key inflammatory, anti-oxidant and genotoxic stress response proteins ERK1/2, NFκB, SOD2, γH2AX, etc. Moreover, Fus1(-/-) mice demonstrated altered dynamics of pro- and anti-inflammatory cytokine expression, such as IFNγ, TNFα, IL-1A, IL-1B and IL-10. 'Late' response cytokine Ccl5 was persistently under-expressed in Fus1(-/-) immune cells at both basal and asbestos-activated states. We observed an asbestos-related difference in the size of CD3(+) CD4(-) CD8(-) DN T cell subset that was expanded four-fold in Fus1(-/-) mice. Finally, we demonstrated Fus1-dependent basal and asbestos-induced changes in major mitochondrial parameters (ROS production, mitochondrial potential and UCP2 expression) in Fus1(-/-) immune cells and in Fus1-depleted cancer cells, thus supporting our hypothesis that Fus1 establishes its immune- and tumour-suppressive activities via regulation of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
46
|
Cell and molecular biology underpinning the effects of PEDF on cancers in general and osteosarcoma in particular. J Biomed Biotechnol 2012; 2012:740295. [PMID: 22690122 PMCID: PMC3368432 DOI: 10.1155/2012/740295] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 03/09/2012] [Accepted: 03/23/2012] [Indexed: 11/17/2022] Open
Abstract
Cancer is becoming an increasingly common disease in which abnormal cells aggressively grow, invade, and metastasize. In this paper, we review the biological functions of PEDF (pigmented epithelium-derived factor) against cancer, with a focus on a particular type of bone cancer called osteosarcoma. PEDF is a 50 kDa glycoprotein and is a potent inhibitor of angiogenesis, via its ability to decrease proliferation and migration of endothelial cells. This paper critically examines the anticancer activities of PEDF via its role in antiangiogenesis, apoptosis-mediated tumor suppression, and increased tumor cell differentiation. Recently, an orthotopic model of osteosarcoma was used to show that treatment with PEDF had the greatest impact on metastases, warranting an evaluation of PEDF efficacy in other types of cancers.
Collapse
|
47
|
Lu C, Stewart DJ, Lee JJ, Ji L, Ramesh R, Jayachandran G, Nunez MI, Wistuba II, Erasmus JJ, Hicks ME, Grimm EA, Reuben JM, Baladandayuthapani V, Templeton NS, McMannis JD, Roth JA. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS One 2012; 7:e34833. [PMID: 22558101 PMCID: PMC3338819 DOI: 10.1371/journal.pone.0034833] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/05/2012] [Indexed: 11/18/2022] Open
Abstract
Background Tumor suppressor gene TUSC2/FUS1 (TUSC2) is frequently inactivated early in lung cancer development. TUSC2 mediates apoptosis in cancer cells but not normal cells by upregulation of the intrinsic apoptotic pathway. No drug strategies currently exist targeting loss-of–function genetic abnormalities. We report the first in-human systemic gene therapy clinical trial of tumor suppressor gene TUSC2. Methods Patients with recurrent and/or metastatic lung cancer previously treated with platinum-based chemotherapy were treated with escalating doses of intravenous N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP):cholesterol nanoparticles encapsulating a TUSC2 expression plasmid (DOTAP:chol-TUSC2) every 3 weeks. Results Thirty-one patients were treated at 6 dose levels (range 0.01 to 0.09 milligrams per kilogram). The MTD was determined to be 0.06 mg/kg. Five patients achieved stable disease (2.6–10.8 months, including 2 minor responses). One patient had a metabolic response on positron emission tomography (PET) imaging. RT-PCR analysis detected TUSC2 plasmid expression in 7 of 8 post-treatment tumor specimens but not in pretreatment specimens and peripheral blood lymphocyte controls. Proximity ligation assay, performed on paired biopsies from 3 patients, demonstrated low background TUSC2 protein staining in pretreatment tissues compared with intense (10–25 fold increase) TUSC2 protein staining in post-treatment tissues. RT-PCR gene expression profiling analysis of apoptotic pathway genes in two patients with high post-treatment levels of TUSC2 mRNA and protein showed significant post-treatment changes in the intrinsic apoptotic pathway. Twenty-nine genes of the 82 tested in the apoptosis array were identified by Igenuity Pathway Analysis to be significantly altered post-treatment in both patients (Pearson correlation coefficient 0.519; p<0.01). Conclusions DOTAP:chol-TUSC2 can be safely administered intravenously in lung cancer patients and results in uptake of the gene by human primary and metastatic tumors, transgene and gene product expression, specific alterations in TUSC2-regulated pathways, and anti-tumor effects (to our knowledge for the first time for systemic DOTAP:cholesterol nanoparticle gene therapy). Trial Registration ClinicalTrials.gov NCT00059605
Collapse
Affiliation(s)
- Charles Lu
- The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Both advanced-stage lung cancer and malignant pleural mesothelioma are associated with a poor prognosis. Advances in treatment regimens for both diseases have had only a modest effect on their progressive course. Gene therapy for thoracic malignancies represents a novel therapeutic approach and has been evaluated in several clinical trials. Strategies have included induction of apoptosis, tumor suppressor gene replacement, suicide gene expression, cytokine-based therapy, various vaccination approaches, and adoptive transfer of modified immune cells. This review considers the clinical results, limitations, and future directions of gene therapy trials for thoracic malignancies.
Collapse
Affiliation(s)
- Anil Vachani
- Division of Pulmonary, Allergy & Critical Care Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Lung cancer is a heterogeneous disease clinically, biologically, histologically, and molecularly. Understanding the molecular causes of this heterogeneity, which might reflect changes occurring in different classes of epithelial cells or different molecular changes occurring in the same target lung epithelial cells, is the focus of current research. Identifying the genes and pathways involved, determining how they relate to the biological behavior of lung cancer, and their utility as diagnostic and therapeutic targets are important basic and translational research issues. This article reviews current information on the key molecular steps in lung cancer pathogenesis, their timing, and clinical implications.
Collapse
Affiliation(s)
- Jill E Larsen
- Hamon Center for Therapeutic Oncology Research, Simmons Cancer Center, 6000 Harry Hines Boulevard, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | | |
Collapse
|
50
|
Regulation of tumor suppressor gene FUS1 expression by the untranslated regions of mRNA in human lung cancer cells. Biochem Biophys Res Commun 2011; 410:235-41. [PMID: 21645495 DOI: 10.1016/j.bbrc.2011.05.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/21/2011] [Indexed: 11/20/2022]
Abstract
FUS1, also known as tumor suppressor candidate 2 (TUSC2), is a tumor suppressor gene located in the human chromosome 3p21.3 region. FUS1 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous FUS1 protein could be detected in a majority of lung cancer cell lines and small cell and non-small cell lung tumor tissues. However, mechanisms regulating FUS1 protein expression and its inactivation in primary lung cancer cells are largely unknown. In this study, we investigated the role of the 5'- and 3'-untranslated regions (UTRs) of the FUS1 gene transcript in the regulation of FUS1 protein expression. We identified RNA sequence elements in FUS1 UTRs that regulate FUS1 protein expression. We found that two small upstream open-reading frames in the 5'UTR of FUS1 mRNA could inhibit the translational initiation of FUS1 protein by interfering with the "scanning" of the ribosome initiation complexes. Several secondary RNA structural elements/motifs on the 3'UTR of FUS1 also exhibited a significant inhibitory effect on FUS1 protein expression. The 3'UTR-mediated regulatory effect on FUS1 protein expression was also differentially detected in normal lung epithelial and fibroblast cells compared with lung cancer cells. Our results provide new insight into the molecular mechanisms involved in the regulation of FUS1 expression.
Collapse
|