1
|
Dang Y, Wang Y, Wei J, Zhang H, Yang Q, Wang B, Li J, Ye C, Chen Y, Han P, Jin X, Wang J, Bao X, Liu H, Ma H, Zhang L, Cheng L, Dong Y, Bai Y, Li Y, Lei Y, Xu Z, Zhang F, Ye W. 25-Hydroxycholesterol inhibits Hantavirus infection by reprogramming cholesterol metabolism. Free Radic Biol Med 2024; 224:232-245. [PMID: 39209137 DOI: 10.1016/j.freeradbiomed.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Hantavirus causes two types of acute diseases: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. It is a major health concern due to its high mortality and lack of effective treatment. Type I interferon treatment has been suggested to be effective against hantavirus when treated in advance. Interferons induce multiple interferon-stimulated genes (ISGs), whose products are highly effective at resisting and controlling viruses. A product of ISGs, the enzyme cholesterol 25-hydroxylase (CH25H), catalyzes the oxidation of cholesterol to 25-hydroxycholesterol (25HC). 25HC can inhibit multiple enveloped-virus infections, but the mechanism is largely unknown, and whether 25HC plays an important role in regulating hantavirus remains unexplored. In this study, we show that Hantaan virus (HTNV), the prototype hantavirus, induced CH25H gene in infected cells. Overexpression of CH25H and treatment with 25HC, inhibited HTNV infection, possibly by lowering 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoA reductase, HMGCR), which inhibits cholesterol biosynthesis. In addition, cholesterol-lowering drugs such as HMGCR-targeting statins have potent hantavirus inhibitory effects. Our results indicate that 25HC and some statins are potential antiviral agents effective against hantavirus infections. This study provides evidence that targeting cholesterol metabolism is promising in developing specific hantavirus antivirals and indicates the possibility of repurposing FDA-approved cholesterol-lowering drug, statins for treating hantavirus infection.
Collapse
Affiliation(s)
- Yamei Dang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jing Wei
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Center for Disease Control and Prevention of Shaanxi Province, Xi'an, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Qiqi Yang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bin Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, China
| | - Jia Li
- Department of Neurology, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, 710100, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yang Chen
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Peijun Han
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, China
| | - Xiaolei Jin
- Cadet Brigade, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Wang
- Cadet Brigade, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaohui Bao
- Cadet Brigade, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, 710032, China
| | - He Liu
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hongwei Ma
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Liang Zhang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yinlan Bai
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yinghui Li
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Air Force Medical University: Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
2
|
Wang Y, Gao L. Cholesterol: A friend to viruses. Int Rev Immunol 2024; 43:248-262. [PMID: 38372266 DOI: 10.1080/08830185.2024.2314577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Cholesterol is a key life-sustaining molecule which regulates membrane fluidity and serves as a signaling mediator. Cholesterol homeostasis is closely related to various pathological conditions including tumor, obesity, atherosclerosis, Alzheimer's disease and viral infection. Viral infection disrupts host cholesterol homeostasis, facilitating their own survival. Meanwhile, the host cells strive to reduce cholesterol accessibility to limit viral infection. This review focuses on the regulation of cholesterol metabolism and the role of cholesterol in viral infection, specifically providing an overview of cholesterol as a friend to promote viral entry, replication, assembly, release and immune evasion, which might inspire valuable thinking for pathogenesis and intervention of viral infection.
Collapse
Affiliation(s)
- Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
3
|
Simvastatin Improves Benign Prostatic Hyperplasia: Role of Peroxisome-Proliferator-Activated Receptor-γ and Classic WNT/β-Catenin Pathway. Int J Mol Sci 2023; 24:ijms24054911. [PMID: 36902342 PMCID: PMC10003121 DOI: 10.3390/ijms24054911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men with an uncertain etiology and mechanistic basis. Metabolic syndrome (MetS) is also a very common illness and is closely related to BPH. Simvastatin (SV) is one of the widely used statins for MetS. Peroxisome-proliferator-activated receptor gamma (PPARγ), crosstalking with the WNT/β-catenin pathway, plays important roles in MetS. Our current study aimed to examine SV-PPARγ-WNT/β-catenin signaling in the development of BPH. Human prostate tissues and cell lines plus a BPH rat model were utilized. Immunohistochemical, immunofluorescence, hematoxylin and eosin (H&E) and Masson's trichrome staining, construction of a tissue microarray (TMA), ELISA, CCK-8 assay, qRT-PCR, flow cytometry, and Western blotting were also performed. PPARγ was expressed in both prostate stroma and epithelial compartments and downregulated in BPH tissues. Furthermore, SV dose-dependently triggered cell apoptosis and cell cycle arrest at the G0/G1 phase and attenuated tissue fibrosis and the epithelial-mesenchymal transition (EMT) process both in vitro and in vivo. SV also upregulated the PPARγ pathway, whose antagonist could reverse SV produced in the aforementioned biological process. Additionally, crosstalk between PPARγ and WNT/β-catenin signaling was demonstrated. Finally, correlation analysis with our TMA containing 104 BPH specimens showed that PPARγ was negatively related with prostate volume (PV) and free prostate-specific antigen (fPSA) and positively correlated with maximum urinary flow rate (Qmax). WNT-1 and β-catenin were positively related with International Prostate Symptom Score (IPSS) and nocturia, respectively. Our novel data demonstrate that SV could modulate cell proliferation, apoptosis, tissue fibrosis, and the EMT process in the prostate through crosstalk between PPARγ and WNT/β-catenin pathways.
Collapse
|
4
|
Mustafin R. Prospects for the use of statins in antiviral therapy. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2023; 25:56-67. [DOI: 10.36488/cmac.2023.1.56-67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Inhibitors of hydroxymethylglutaryl-CoA reductase, in addition to suppressing cholesterol synthesis, have an antiviral effect. Clinical studies have shown antiviral efficacy of statins against COVID-19, HCV, HBV, RSV, HIV, influenza viruses. The ability of statins to inhibit influenza viruses, COVID-19, RSV, HIV, as well as Ebola, Zika, Dengue, Coxsackie, rotaviruses, ADV, HDV, HHV was experimentally confirmed. Statins can also enhance the effects of antiviral drugs, making them more effective in treating infections. Therefore, the use of statins in the complex therapy of viral infections is promising. In addition, the role of influenza viruses, T-cell leukemia and herpesviruses, HIV, HBV, HCV, HPV in the development of atherosclerosis has been identified, so the use of statins in complex treatment is also necessary to correct endothelial dysfunction that occurs under the influence of viruses. Since the activity of retroelements that are evolutionarily related to exogenous viruses increases with aging, it has been suggested that retrotransposons can also be targets for statins. This is evidenced by a change in the expression of non-coding RNAs under the action of statins, since the key sources of non-coding RNAs are retroelements. This property may be an additional factor in the prescription of statins to increase life expectancy, in addition to the prevention and treatment of atherosclerosis, since pathological activation of retroelements are the causes of aging. Viruses, like retroelements, are involved in the pathogenesis of malignant neoplasms, in the treatment of which statins have shown their effectiveness and the ability to enhance the effect of anticancer drugs, overcoming chemoresistance (similar to the potentiation of antiviral drugs). One of the mechanisms of this activity of statins may be their effect on retroelements and viruses.
Collapse
|
5
|
Feng J, Dai W, Mao Y, Wu L, Li J, Chen K, Yu Q, Kong R, Li S, Zhang J, Ji J, Wu J, Mo W, Xu X, Guo C. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res 2020; 39:24. [PMID: 32000827 PMCID: PMC6993409 DOI: 10.1186/s13046-020-1528-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common primary malignant tumor which usually progresses to an advanced stage because of late diagnosis. Sorafenib (Sora) is a first line medicine for advanced stage HCC; however, it has been faced with enormous resistance. Simvastatin (Sim) is a cholesterol-lowering drug and has been reported to inhibit tumor growth. The present study aims to determine whether Sora and Sim co-treatment can improve Sora resistance in HCC. METHODS The HCC cell line LM3 and an established Sora-resistant LM3 cell line (LM3-SR) were used to study the relationship between Sora resistance and aerobic glycolysis. Cell proliferation, apoptosis and glycolysis levels were analyzed by western blotting, flow cytometry analysis and biomedical tests. A xenograft model was also used to examine the effect of Sim in vivo. Detailed mechanistic studies were also undertaken by the use of activators and inhibitors, and lentivirus transfections. RESULTS Our results demonstrated that the resistance to Sora was associated with enhanced aerobic glycolysis levels. Furthermore, LM3-SR cells were more sensitive to Sim than LM3 cells, suggesting that combined treatment with both Sora and Sim could enhance the sensitivity of LM3-SR cells to Sora. This finding may be due to the suppression of the HIF-1α/PPAR-γ/PKM2 axis. CONCLUSIONS Simvastatin can inhibit the HIF-1α/PPAR-γ/PKM2 axis, by suppressing PKM2-mediated glycolysis, resulting in decreased proliferation and increased apoptosis in HCC cells, and re-sensitizing HCC cells to Sora.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China.
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China.
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China.
| | - Yuqing Mao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Rui Kong
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
- Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 200072, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, 200060, China
| | - Wenhui Mo
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, 200433, China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, 200433, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, NO. 301, Middle Yanchang Road, Jing'an District, Shanghai, 200072, China.
| |
Collapse
|
6
|
York AG, Williams KJ, Argus JP, Zhou QD, Brar G, Vergnes L, Gray EE, Zhen A, Wu NC, Yamada DH, Cunningham CR, Tarling EJ, Wilks MQ, Casero D, Gray DH, Yu AK, Wang ES, Brooks DG, Sun R, Kitchen SG, Wu TT, Reue K, Stetson DB, Bensinger SJ. Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling. Cell 2015; 163:1716-29. [PMID: 26686653 DOI: 10.1016/j.cell.2015.11.045] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/15/2015] [Accepted: 11/18/2015] [Indexed: 01/04/2023]
Abstract
Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity.
Collapse
Affiliation(s)
- Autumn G York
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin J Williams
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joseph P Argus
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Quan D Zhou
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gurpreet Brar
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Elizabeth E Gray
- Department of Immunology, University of Washington, 750 Republican Street, Box 358059, Seattle, WA 98109, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA 90095, USA
| | - Nicholas C Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas H Yamada
- Immuno-Oncology Discovery Research; Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Cameron R Cunningham
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elizabeth J Tarling
- Division of Cardiology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Moses Q Wilks
- Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Casero
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - David H Gray
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy K Yu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric S Wang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David G Brooks
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, ON M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Scott G Kitchen
- Division of Hematology/Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA 90095, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel B Stetson
- Department of Immunology, University of Washington, 750 Republican Street, Box 358059, Seattle, WA 98109, USA
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Butt AA, Yan P, Bonilla H, Abou-Samra AB, Shaikh OS, Simon TG, Chung RT, Rogal SS. Effect of addition of statins to antiviral therapy in hepatitis C virus-infected persons: Results from ERCHIVES. Hepatology 2015; 62:365-74. [PMID: 25847403 DOI: 10.1002/hep.27835] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been variably noted to affect hepatitis C virus (HCV) treatment response, fibrosis progression, and hepatocellular carcinoma (HCC) incidence, with some having a more potent effect than others. We sought to determine the impact of adding statins to antiviral therapy upon sustained virological response (SVR) rates, fibrosis progression, and HCC development among HCV-infected persons using the Electronically Retrieved Cohort of HCV Infected Veterans (ERCHIVES), an established, longitudinal, national cohort of HCV-infected veterans. Within ERCHIVES, we identified those who received HCV treatment and a follow-up of >24 months after treatment completion. We excluded those with human immunodeficiency virus coinfection, hepatitis B surface antigen positivity, cirrhosis, and HCC at baseline. Our main outcomes were liver fibrosis progression measured by FIB-4 scores, SVR rates, and incident HCC (iHCC). Among 7,248 eligible subjects, 46% received statin therapy. Statin use was significantly associated with attaining SVR (39.2% vs. 33.3%; P < 0.01), decreased cirrhosis development (17.3% vs. 25.2%; P < 0.001), and decreased iHCC (1.2% vs. 2.6%; P < 0.01). Statins remained significantly associated with increased odds of SVR (odds ratio = 1.44; 95% confidence interval [CI] = 1.29, 1.61), but lower fibrosis progression rate, lower risk of progression to cirrhosis (hazard ratio [HR] = 0.56; 95% CI = -0.50, 0.63), and of incident HCC (HR = 0.51; 95% CI = 0.34, 0.76) after adjusting for other relevant clinical factors. CONCLUSIONS Statin use was associated with improved virological response (VR) rates to antiviral therapy and decreased progression of liver fibrosis and incidence of HCC among a large cohort of HCV-positive Veterans. These data support the use of statins in patients with HCV.
Collapse
Affiliation(s)
- Adeel A Butt
- VA Pittsburgh Healthcare System, Pittsburgh, PA.,University of Pittsburgh School of Medicine, Pittsburgh, PA.,Hamad Healthcare Quality Institute, Hamad Medical Corporation, Doha, Qatar
| | - Peng Yan
- VA Pittsburgh Healthcare System, Pittsburgh, PA
| | | | | | - Obaid S Shaikh
- VA Pittsburgh Healthcare System, Pittsburgh, PA.,University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Raymond T Chung
- Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Shari S Rogal
- VA Pittsburgh Healthcare System, Pittsburgh, PA.,University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | |
Collapse
|