1
|
Thangasparan S, Kamisah Y, Ugusman A, Mohamad Anuar NN, Ibrahim N‘I. Unravelling the Mechanisms of Oxidised Low-Density Lipoprotein in Cardiovascular Health: Current Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2024; 25:13292. [PMID: 39769058 PMCID: PMC11676878 DOI: 10.3390/ijms252413292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Cardiovascular diseases (CVD) are the number one cause of death worldwide, with atherosclerosis, which is the formation of fatty plaques in the arteries, being the most common underlying cause. The activation of inflammatory events and endothelium dysfunction are crucial for the development and pathophysiology of atherosclerosis. Elevated circulating levels of low-density lipoprotein (LDL) have been associated with severity of atherosclerosis. LDL can undergo oxidative modifications, resulting in oxidised LDL (oxLDL). OxLDL has been found to have antigenic potential and contribute significantly to atherosclerosis-associated inflammation by activating innate and adaptive immunity. Various inflammatory stimuli such as interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α) and intercellular adhesion molecule 1 (ICAM-1) play major roles in atherosclerosis. To date, studies have provided valuable insights into the role of oxLDL in the development of atherosclerosis. However, there remains a gap in understanding the specific pathways involved in this process. This review aims to provide and discuss the mechanisms by which oxLDL modulates signalling pathways that cause cardiovascular diseases by providing in vitro and in vivo experimental evidence. Its critical role in triggering and sustaining endothelial dysfunction highlights its potential as a therapeutic target. Advancing the understanding of its atherogenic role and associated signalling pathways could pave the way for novel targeted therapeutic strategies to combat atherosclerosis more effectively.
Collapse
Affiliation(s)
- Sahsikala Thangasparan
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.T.); (Y.K.)
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.T.); (Y.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
| | - Azizah Ugusman
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
| | - Nur Najmi Mohamad Anuar
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
- Programme of Biomedical Science, Center for Toxicology & Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nurul ‘Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.T.); (Y.K.)
- Cardiovascular and Pulmonary Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.U.); (N.N.M.A.)
| |
Collapse
|
2
|
Zhang J, Li M, Wang X, Wang T, Tian W, Xu H. Association between dietary niacin intake and abdominal aortic calcification among the US adults: the NHANES 2013-2014. Front Nutr 2024; 11:1459894. [PMID: 39668898 PMCID: PMC11634585 DOI: 10.3389/fnut.2024.1459894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Background Abdominal aortic calcification (AAC) serves as a reliable predictor of future cardiovascular incidents. This study investigated the association between dietary niacin intake and AAC in US adults. Methods In this study, we conducted a cross-sectional study of 2,238 individuals aged 40 years and older using data from the National Health and Nutrition Examination Survey (NHANES) 2013-2014. AAC was evaluated using the Kauppila scoring system through dual-energy X-ray absorptiometry. Daily niacin intake was calculated by averaging the two dietary recalls and classified in tertiles for analysis. In this study, multiple regression analyses and smoothed curve fitting were used to examine the relationship between dietary niacin intake and AAC, subgroup analyses and interaction tests were used to assess the stability of this relationship across different segments of the population, and forest plots were used to present the results. In addition, we validated the predictive performance of dietary niacin intake on the risk of severe AAC through Receiver Operating Characteristic (ROC) curve analysis. Results Among 2,238 participants aged >40 years, the results showed that the higher dietary niacin intake group was associated with lower AAC score (β = -0.02, 95% CI: -0.04 - -0.01), and a lower risk of severe AAC (OR = 0.97, 95% CI: 0.96-0.99). In the fully adjusted model, the higher tertile group was associated with lower AAC score (β = -0.37, 95% CI: -0.73 - -0.02; P for trend = 0.0461) and a lower risk of severe AAC (OR = 0.60, 95% CI: 0.38-0.93; P for trend = 0.0234). The relationship between dietary niacin intake and AAC differed significantly between diabetic and non-diabetic population. The ROC curve analysis revealed that the area under the curve (AUC) for predicting severe AAC risk based on dietary niacin intake was 0.862, indicating good predictive performance. Conclusion Higher dietary niacin intake group was associated with lower AAC score and a lower risk of severe AAC. Our findings suggest that dietary niacin intake has the potential to offer benefits in preventing AAC in the general population.
Collapse
Affiliation(s)
- Jiqian Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongxin Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wende Tian
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Wang Z, Tang F, Zhao B, Yan H, Shao X, Yang Q. Composite dietary antioxidant index and abdominal aortic calcification: a national cross-sectional study. Nutr J 2024; 23:130. [PMID: 39438863 PMCID: PMC11494755 DOI: 10.1186/s12937-024-01029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE The Composite Dietary Antioxidant Index (CDAI) is a novel, inclusive measure for evaluating the antioxidant potential of diets. We aim to explore the link between the CDAI and abdominal aortic calcification (AAC) in U.S. adults aged ≥ 40 years. METHODS This cross-sectional study collected dietary and AAC data for individuals aged ≥ 40 years from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) database. The CDAI was calculated using six dietary antioxidants. AAC was evaluated using a semi-quantitative scoring system known as AAC-24, with an AAC score greater than 6 as severe AAC (SAAC). To examine the association between CDAI and AAC, including SAAC, liner/logistic regression analyses and smooth curve fitting were applied. RESULTS A total of 2,640 participants were included in this study, and significant decreases in AAC score and SAAC prevalence were observed with ascending CDAI levels (P < 0.01). After adjusting for confounding factors, a clear link was established between the CDAI and both AAC score (β = -0.083, 95% CI -0.144-0.022, P = 0.008) and SAAC (OR = 0.883, 95% CI 0.806-0.968, P = 0.008), respectively. Further smooth curve fitting indicated a negative correlation between CDAI and both AAC score and SAAC. CONCLUSIONS Dietary antioxidant consumption, as quantified by the CDAI, shows an inverse relationship with AAC risk. Additional longitudinal and intervention studies are essential.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Fengyan Tang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Bo Zhao
- Department of Cardiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Han Yan
- Department of Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, Jiangsu, 213017, China
- Department of Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, 213017, China
| | - Xuejing Shao
- Department of Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, Jiangsu, 213017, China
- Department of Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, 213017, China
| | - Qichao Yang
- Department of Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, Jiangsu, 213017, China.
- Department of Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, 213017, China.
| |
Collapse
|
4
|
Wei X, Shen Z, Zhu M, Fang M, Wang S, Zhang T, Zhang B, Yang X, Lv Z, Duan Y, Jiang M, Ma C, Li Q, Chen Y. The pterostilbene-dihydropyrazole derivative Ptd-1 ameliorates vascular calcification by regulating inflammation. Int Immunopharmacol 2023; 125:111198. [PMID: 37952482 DOI: 10.1016/j.intimp.2023.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Vascular calcification is an independent risk factor for cardiovascular disease. However, there is still a lack of adequate treatment. This study aimed to examine the potential of (E)-1-(5-(2-(4-fluorobenzyloxy)Styryl)-4,6-dimethoxyphenyl)-3-methyl-4,5-dihydro-1H-pyrazole-1-yl) ethyl ketone (Ptd-1) to alleviate vascular calcification. ApoE-deficient mice were fed a high-fat diet for 12/16 weeks to induce intimal calcification, and wild-type mice were induced with a combination of nicotine and vitamin D3 to induce medial calcification. Human aortic smooth muscle cells (HASMCs) and aortic osteogenic differentiation were induced in vitro with phosphate. In the mouse model of atherosclerosis, Ptd-1 significantly ameliorated the progression of atherosclerosis and intimal calcification, and there were significant reductions in lipid deposition and calcium salt deposition in the aorta and aortic root. In addition, Ptd-1 significantly improved medial calcification in vivo and osteogenic differentiation in vitro. Mechanistically, Ptd-1 reduced the levels of the inflammatory factors IL-1β, TNFα and IL-6 in vivo and in vitro. Furthermore, we demonstrated that Ptd-1 could attenuate the expression of p-ERK1/2 and β-catenin, and that the levels of inflammatory factors were elevated in the presence of ERK1/2 and β-catenin agonists. Interestingly, we determined that activation of the ERK1/2 pathway promoted β-catenin expression, which further regulated the IL-6/STAT3 signaling pathway. Ptd-1 blocked ERK1/2 signaling, leading to decreased expression of inflammatory factors, which in turn improved vascular calcification. Taken together, our study reveals that Ptd-1 ameliorates vascular calcification by regulating the production of inflammatory factors, providing new ideas for the treatment of vascular calcification.
Collapse
Affiliation(s)
- Xiaoning Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhenbao Shen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengmeng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengyuan Fang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shengnan Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tingting Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhilin Lv
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, the National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang University, Nanchang, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Qingshan Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
5
|
Jia J, Zhang J, He Q, Wang M, Liu Q, Wang T, Chen X, Wang W, Xu H. Association between dietary vitamin C and abdominal aortic calcification among the US adults. Nutr J 2023; 22:58. [PMID: 37964312 PMCID: PMC10647183 DOI: 10.1186/s12937-023-00889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of mortality, and vascular calcification has been highly correlated with CVD events. Abdominal aortic calcification (AAC) has been shown to predict subclinical CVD and incident CVD events. However, the relationship between vitamin C and abdominal aortic calcification remains unclear. OBJECTIVE To investigate the relationship of dietary vitamin C with AAC among the adult population in the US. METHODS The National Health and Nutrition Examination Survey (NHANES) 2013-2014 provided the data for the cross-sectional study. 2297 subjects (1089 males) were included in the study. Two scoring systems, AAC 24-point scale (Kauppila) and AAC 8-point scale (Schousboe), were used for the measurement of AAC score. Dietary vitamin C intake was calculated as the average of two rounds of 24-h interview recall data and classified in tertiles for analysis. We applied weighted multiple regression analyses to assess the relationship of dietary vitamin C with AAC score and the risk of having AAC. To ensure the robustness of the findings, subgroup and sensitivity analyses were performed. Additionally, smooth curve fittings, using generalized additive models (GAM) were employed to visualize potential nonlinear relationships. Furthermore, an exploratory analysis on the relationship of vitamin C supplements with AAC was also conducted. RESULTS The results showed that higher dietary vitamin C intake was related to a reduction in AAC score (AAC-24: β = -0.338, 95% confidence interval [CI] -0.565, -0.111, P = 0.004; AAC-8: β = -0.132, 95%CI -0.217, -0.047, P = 0.002), and lower risk of AAC (odds ratio [OR] = 0.807, 95%CI 0.659, 0.989, P = 0.038). However, the relationship of vitamin C supplements with AAC was not identified. CONCLUSIONS The study revealed that higher intake of dietary vitamin C rather than vitamin C supplements was related to reduced AAC score and lower risk of AAC, indicating that diets rich in vitamin C are recommended due to its potential benefits for protecting against vascular calcification and CVD among the adult population in the US.
Collapse
Affiliation(s)
- Jundi Jia
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China-Japan Friendship Hospital, Beijing, China
| | - Qiao He
- Clinical Epidemiology and Evidence-Based Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mingqi Wang
- Clinical Epidemiology and Evidence-Based Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyu Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongxin Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanye Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Academy of Chinese Medical Sciences, Beijing, China
| | - Wen Wang
- Clinical Epidemiology and Evidence-Based Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
The Role of Hydrogen Sulfide in Plaque Stability. Antioxidants (Basel) 2022; 11:antiox11122356. [PMID: 36552564 PMCID: PMC9774534 DOI: 10.3390/antiox11122356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Atherosclerosis is the greatest contributor to cardiovascular events and is involved in the majority of deaths worldwide. Plaque rapture or erosion precipitates life-threatening thrombi, resulting in the obstruction blood flow to the heart (acute coronary syndrome), brain (ischemic stroke) or low extremities (peripheral vascular diseases). Among these events, major causation dues to the plaque rupture. Although the initiation, procession, and precise time of controlling plaque rupture are unclear, foam cell formation and apoptosis, cell death, extracellular matrix components, protease expression and activity, local inflammation, intraplaque hemorrhage, and calcification contribute to the plaque instability. These alterations tightly associate with the function regulation of intraplaque various cell populations. Hydrogen sulfide (H2S) is gasotransmitter derived from methionine metabolism and exerts a protective role in the genesis of atherosclerosis. Recent progress also showed H2S mediated the plaque stability. In this review, we discuss the progress of endogenous H2S modulation on functions of vascular smooth muscle cells, monocytes/macrophages, and T cells, and the molecular mechanism in plaque stability.
Collapse
|
7
|
Cao G, Xuan X, Hu J, Zhang R, Jin H, Dong H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal 2022; 20:180. [PMID: 36411459 PMCID: PMC9677683 DOI: 10.1186/s12964-022-00993-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the most abundant cell in vessels. Earlier experiments have found that VSMCs possess high plasticity. Vascular injury stimulates VSMCs to switch into a dedifferentiated type, also known as synthetic VSMCs, with a high migration and proliferation capacity for repairing vascular injury. In recent years, largely owing to rapid technological advances in single-cell sequencing and cell-lineage tracing techniques, multiple VSMCs phenotypes have been uncovered in vascular aging, atherosclerosis (AS), aortic aneurysm (AA), etc. These VSMCs all down-regulate contractile proteins such as α-SMA and calponin1, and obtain specific markers and similar cellular functions of osteoblast, fibroblast, macrophage, and mesenchymal cells. This highly plastic phenotype transformation is regulated by a complex network consisting of circulating plasma substances, transcription factors, growth factors, inflammatory factors, non-coding RNAs, integrin family, and Notch pathway. This review focuses on phenotypic characteristics, molecular profile and the functional role of VSMCs phenotype landscape; the molecular mechanism regulating VSMCs phenotype switching; and the contribution of VSMCs phenotype switching to vascular aging, AS, and AA. Video Abstract.
Collapse
Affiliation(s)
- Genmao Cao
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Xuezhen Xuan
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Jie Hu
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Ruijing Zhang
- grid.452845.a0000 0004 1799 2077Department of Nephrology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Haijiang Jin
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Honglin Dong
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| |
Collapse
|
8
|
Kaur R, Singh R. Mechanistic insights into CKD-MBD-related vascular calcification and its clinical implications. Life Sci 2022; 311:121148. [DOI: 10.1016/j.lfs.2022.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
9
|
Chen Y, Liang L, Wu C, Cao Z, Xia L, Meng J, Wang Z. Epigenetic Control of Vascular Smooth Muscle Cell Function in Atherosclerosis: A Role for DNA Methylation. DNA Cell Biol 2022; 41:824-837. [PMID: 35900288 DOI: 10.1089/dna.2022.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a complex vascular inflammatory disease in which multiple cell types are involved, including vascular smooth muscle cells (VSMCs). In response to vascular injury and inflammatory stimuli, VSMCs undergo a "phenotypic switching" characterized by extracellular matrix secretion, loss of contractility, and abnormal proliferation and migration, which play a key role in the progression of atherosclerosis. DNA methylation modification is an important epigenetic mechanism that plays an important role in atherosclerosis. Studies investigating abnormal DNA methylation in patients with atherosclerosis have determined a specific DNA methylation profile, and proposed multiple pathways and genes involved in the etiopathogenesis of atherosclerosis. Recent studies have also revealed that DNA methylation modification controls VSMC function by regulating gene expression involved in atherosclerosis. In this review, we summarize the recent advances regarding the epigenetic control of VSMC function by DNA methylation in atherosclerosis and provide insights into the development of VSMC-centered therapeutic strategies.
Collapse
Affiliation(s)
- Yanjun Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Lingli Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Chunyan Wu
- The Third Affiliated Hospital of University of South China, Hengyang, China
| | - Zitong Cao
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Linzhen Xia
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
10
|
Cysteine-Rich LIM-Only Protein 4 (CRP4) Promotes Atherogenesis in the ApoE -/- Mouse Model. Cells 2022; 11:cells11081364. [PMID: 35456043 PMCID: PMC9032522 DOI: 10.3390/cells11081364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) can switch from their contractile state to a synthetic phenotype resulting in high migratory and proliferative capacity and driving atherosclerotic lesion formation. The cysteine-rich LIM-only protein 4 (CRP4) reportedly modulates VSM-like transcriptional signatures, which are perturbed in VSMCs undergoing phenotypic switching. Thus, we hypothesized that CRP4 contributes to adverse VSMC behaviours and thereby to atherogenesis in vivo. The atherogenic properties of CRP4 were investigated in plaque-prone apolipoprotein E (ApoE) and CRP4 double-knockout (dKO) as well as ApoE-deficient CRP4 wildtype mice. dKO mice exhibited lower plaque numbers and lesion areas as well as a reduced content of α-smooth muscle actin positive cells in the lesion area, while lesion-associated cell proliferation was elevated in vessels lacking CRP4. Reduced plaque volumes in dKO correlated with significantly less intra-plaque oxidized low-density lipoprotein (oxLDL), presumably due to upregulation of the antioxidant factor peroxiredoxin-4 (PRDX4). This study identifies CRP4 as a novel pro-atherogenic factor that facilitates plaque oxLDL deposition and identifies the invasion of atherosclerotic lesions by VSMCs as important determinants of plaque vulnerability. Thus, targeting of VSMC CRP4 should be considered in plaque-stabilizing pharmacological strategies.
Collapse
|
11
|
miR-424/322 protects against abdominal aortic aneurysm formation by modulating the Smad2/3/runt-related transcription factor 2 axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:656-669. [PMID: 35036072 PMCID: PMC8752907 DOI: 10.1016/j.omtn.2021.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Rupture of abdominal aortic aneurysms (AAAs) is one of the leading causes of sudden death in the elderly population. The osteogenic transcription factor runt-related gene (RUNX) encodes multifunctional mediators of intracellular signal transduction pathways in vascular remodeling and inflammation. We aimed to evaluate the roles of RUNX2 and its putative downstream target miR-424/322 in the modulation of several AAA progression-related key molecules, such as matrix metalloproteinases and vascular endothelial growth factor. In the GEO database, we found that male patients with AAAs had higher RUNX2 expression than did control patients. Several risk factors for aneurysm induced the overexpression of MMPs through RUNX2 transactivation, and this was dependent on Smad2/3 upregulation in human aortic smooth muscle cells. miR-424 was overexpressed through RUNX2 after angiotensin II (AngII) challenge. The administration of siRUNX2 and miR-424 mimics attenuated the activation of the Smad/RUNX2 axis and the overexpression of several AAA progression-related molecules in vitro. Compared to their littermates, miR-322 KO mice were susceptible to AngII-induced AAA, whereas the silencing of RUNX2 and the administration of exogenous miR-322 mimics ameliorated the AngII-induced AAA in ApoE KO mice. Overall, we established the roles of the Smad/RUNX2/miR-424/322 axis in AAA pathogenesis. We demonstrated the therapeutic potentials of miR-424/322 mimics and RUNX2 inhibitor for AAA progression.
Collapse
|
12
|
Hu CT, Shao YD, Liu YZ, Xiao X, Cheng ZB, Qu SL, Huang L, Zhang C. Oxidative stress in vascular calcification. Clin Chim Acta 2021; 519:101-110. [PMID: 33887264 DOI: 10.1016/j.cca.2021.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
Vascular calcification (VC), which is closely associated with significant mortality in cardiovascular disease, chronic kidney disease (CKD), and/or diabetes mellitus, is characterized by abnormal deposits of hydroxyapatite minerals in the arterial wall. The impact of oxidative stress (OS) on the onset and progression of VC has not been well described. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, myeloperoxidase (MPO), nitric oxide synthases (NOSs), superoxide dismutase (SOD) and paraoxonases (PONs) are relevant factors that influence the production of reactive oxygen species (ROS). Furthermore, excess ROS-induced OS has emerged as a critical mediator promoting VC through several mechanisms, including phosphate balance, differentiation of vascular smooth muscle cells (VSMCs), inflammation, DNA damage, and extracellular matrix remodeling. Because OS is a significant regulator of VC, antioxidants may be considered as novel treatment options.
Collapse
Affiliation(s)
- Chu-Ting Hu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Medical Laboratory, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Duo Shao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yi-Zhang Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xuan Xiao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Zhe-Bin Cheng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China; Departments of Stomatology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Lab for Clinical & Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
13
|
Huang Z, Li P, Wu L, Zhang D, Du B, Liang C, Gao L, Zhang Y, Yao R. Hsa_circ_0029589 knockdown inhibits the proliferation, migration and invasion of vascular smooth muscle cells via regulating miR-214-3p and STIM1. Life Sci 2020; 259:118251. [PMID: 32795540 DOI: 10.1016/j.lfs.2020.118251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
AIMS Circular RNAs (circRNAs) are relevant to atherosclerosis progression. However, the role and mechanism of circRNA hsa_circ_0029589 (circ_0029589) in atherosclerosis are not fully understood. This research aims to explore the function and mechanism of circ_0029589 in oxidized low-density lipoprotein (ox-LDL)-caused vascular smooth muscle cells (VSMCs) injury in vitro. MAIN METHODS VSMCs were challenged via ox-LDL to mimic atherosclerosis-like injury in vitro. Circ_0029589, microRNA-214-3p (miR-214-3p) and stromal interaction molecule 1 (STIM1) abundances were detected via quantitative reverse transcription polymerase chain reaction or western blot. Cell proliferation was investigated via cell viability, cycle, apoptosis and proliferation-associated protein levels. Cell migration and invasion were assessed via transwell analysis. The relationship between miR-214-3p and circ_0029589 or STIM1 was tested via dual-luciferase reporter analysis and RNA immunoprecipitation. KEY FINDINGS Circ_0029589 level was enhanced in ox-LDL-challenged VSMCs. Circ_0029589 interference constrained cell proliferation, migration and invasion in ox-LDL-challenged VSMCs. miR-214-3p was targeted by circ_0029589 and miR-214-3p knockdown weakened the suppressive function of circ_0029589 silence on VSMCs proliferation, migration and invasion. STIM1 was targeted via miR-214-3p and miR-214-3p could suppress VSMCs proliferation, migration and invasion via decreasing STIM1. Moreover, circ_0029589 modulated STIM1 level by miR-214-3p. SIGNIFICANCE Circ_0029589 knockdown repressed proliferation, migration and invasion of VSMCs challenged via ox-LDL by regulating miR-214-3p and STIM1, indicating that circ_0029589 might play important role in atherosclerosis.
Collapse
Affiliation(s)
- Zhen Huang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Penglei Li
- Department of Vasculocardiology, People's Hospital of Zhongmu, Zhengzhou, Henan, China
| | - Leiming Wu
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dianhong Zhang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Binbin Du
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Cui Liang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Gao
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanzhou Zhang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Yao
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
da Silva RA, da S Feltran G, da C Fernandes CJ, Zambuzzi WF. Osteogenic gene markers are epigenetically reprogrammed during contractile-to-calcifying vascular smooth muscle cell phenotype transition. Cell Signal 2020; 66:109458. [PMID: 31678252 DOI: 10.1016/j.cellsig.2019.109458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
Abstract
The understanding of vascular calcification-based mechanism is an urgent pending task in vascular biology and this prompted us to better address this issue by investigating whether DNA methylation mechanism might drive osteogenic marker genes modulation in primary human vascular smooth muscle cells (VSMCs) responding to calcium and phosphate levels overload up to 72 h. Firstly, our data shows this calcifying process recapitulates the molecular repertory of osteogenic biomarkers and specifically requiring RUNX2, Osterix and ALP, BSP genes activations along 72 h in vitro, and this behavior was validated here using other lineages. Conversely, both BMPs 4 and 7 were significantly overexpressed, maybe already as a mechanism in response to RUNX2 and Osterix genes activities identified earlier in response to the calcifying condition, and taken into maintain the calcifying phenotype of VSMCs. Additionally, survival signaling was maintained active and accompanied by a dynamic cytoskeleton rearrangement signaling requiring MAPK and AKT phosphorylations. Moreover, during the contractile-to-calcifying transition phenotype of VSMCs, epigenetic machinery was finely modulated, requiring the translocation of DNMT3B and TET2 into nucleus and this prompted us evaluating whether the profile of osteogenic-related gene promoters' methylation might contribute with this process. By firstly estimating 5meC/5 hmeC ratio changes, we further specifically show the significance of the epigenetic modulation of Osterix and Bone sialoprotein related gene promoters, presenting a positive correlation between the epigenetic signature of their gene promoters and transcriptional patterns. Altogether, our results show for the first time the importance of epigenetic mechanism on modulating osteogenic gene markers reprogramming during calcifying VSMCs phenotype acquisition, which might drive the genesis of vascular ectopic calcification.
Collapse
Affiliation(s)
- Rodrigo A da Silva
- Laboratory of Bioassays and Cellular Dynamics of the Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, 18618-970, Brazil; Department of Biology, Dental School, University of Taubaté, 12020-340, Taubaté, São Paulo, Brazil
| | - Geórgia da S Feltran
- Laboratory of Bioassays and Cellular Dynamics of the Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, 18618-970, Brazil
| | - Célio Júnior da C Fernandes
- Laboratory of Bioassays and Cellular Dynamics of the Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, 18618-970, Brazil
| | - Willian F Zambuzzi
- Laboratory of Bioassays and Cellular Dynamics of the Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo, 18618-970, Brazil.
| |
Collapse
|
15
|
Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol 2019; 16:727-744. [PMID: 31243391 DOI: 10.1038/s41569-019-0227-9] [Citation(s) in RCA: 637] [Impact Index Per Article: 106.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are a major cell type present at all stages of an atherosclerotic plaque. According to the 'response to injury' and 'vulnerable plaque' hypotheses, contractile VSMCs recruited from the media undergo phenotypic conversion to proliferative synthetic cells that generate extracellular matrix to form the fibrous cap and hence stabilize plaques. However, lineage-tracing studies have highlighted flaws in the interpretation of former studies, revealing that these studies had underestimated both the content and functions of VSMCs in plaques and have thus challenged our view on the role of VSMCs in atherosclerosis. VSMCs are more plastic than previously recognized and can adopt alternative phenotypes, including phenotypes resembling foam cells, macrophages, mesenchymal stem cells and osteochondrogenic cells, which could contribute both positively and negatively to disease progression. In this Review, we present the evidence for VSMC plasticity and summarize the roles of VSMCs and VSMC-derived cells in atherosclerotic plaque development and progression. Correct attribution and spatiotemporal resolution of clinically beneficial and detrimental processes will underpin the success of any therapeutic intervention aimed at VSMCs and their derivatives.
Collapse
Affiliation(s)
- Gemma L Basatemur
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Helle F Jørgensen
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Murray C H Clarke
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK.
- INSERM U970, Paris Cardiovascular Research Center, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
16
|
Durham AL, Speer MY, Scatena M, Giachelli CM, Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res 2019. [PMID: 29514202 PMCID: PMC5852633 DOI: 10.1093/cvr/cvy010] [Citation(s) in RCA: 662] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Vascular calcification is associated with a significant increase in all-cause mortality and atherosclerotic plaque rupture. Calcification has been determined to be an active process driven in part by vascular smooth muscle cell (VSMC) transdifferentiation within the vascular wall. Historically, VSMC phenotype switching has been viewed as binary, with the cells able to adopt a physiological contractile phenotype or an alternate ‘synthetic’ phenotype in response to injury. More recent work, including lineage tracing has however revealed that VSMCs are able to adopt a number of phenotypes, including calcific (osteogenic, chondrocytic, and osteoclastic), adipogenic, and macrophagic phenotypes. Whilst the mechanisms that drive VSMC differentiation are still being elucidated it is becoming clear that medial calcification may differ in several ways from the intimal calcification seen in atherosclerotic lesions, including risk factors and specific drivers for VSMC phenotype changes and calcification. This article aims to compare and contrast the role of VSMCs in driving calcification in both atherosclerosis and in the vessel media focusing on the major drivers of calcification, including aging, uraemia, mechanical stress, oxidative stress, and inflammation. The review also discusses novel findings that have also brought attention to specific pro- and anti-calcifying proteins, extracellular vesicles, mitochondrial dysfunction, and a uraemic milieu as major determinants of vascular calcification.
Collapse
Affiliation(s)
- Andrew L Durham
- Division of Cardiology, James Black Centre, Kings College London, Denmark Hill, London, SE5 9NU, UK
| | - Mei Y Speer
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Marta Scatena
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Catherine M Shanahan
- Division of Cardiology, James Black Centre, Kings College London, Denmark Hill, London, SE5 9NU, UK
| |
Collapse
|
17
|
Novikova OA, Nazarkina ZK, Cherepanova AV, Laktionov PP, Chelobanov BP, Murashov IS, Deev RV, Pokushalov EA, Karpenko AA, Laktionov PP. Isolation, culturing and gene expression profiling of inner mass cells from stable and vulnerable carotid atherosclerotic plaques. PLoS One 2019; 14:e0218892. [PMID: 31242269 PMCID: PMC6594632 DOI: 10.1371/journal.pone.0218892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
The connective tissue components that form the atherosclerotic plaque body are produced by the plaque inner mass cells (PIMC), located inside the plaque. We report an approach to isolate and culture cells from the connective tissue of stable and vulnerable human atherosclerotic plaques based on elimination of non-connective tissue cells such as blood and non-plaque intima cells with a lysis buffer. The resulting plaque cells were characterized by growth capacity, morphology, transcriptome profiling and specific protein expression. Plaque cells slowly proliferated for up to three passages unaffected by the use of proliferation stimulants or changes of culture media composition. Stable plaques yielded more cells than vulnerable ones. Plaque cell cultures also contained several morphological cellular types. RNA-seq profiles of plaque cells were different from any of the cell types known to be involved in atherogenesis. The expression of the following proteins was observed in cultured plaque cells: smooth muscle cells marker α-SMA, macrophage marker CD14, extracellular matrix proteins aggrecan, fibronectin, neovascularisation markers VEGF-A, CD105, cellular adhesion receptor CD31 and progenitor/dedifferentiation receptor CD34. Differential expression of several notable transcripts in cells from stable and vulnerable plaques suggests the value of plaque cell culture studies for the search of plaque vulnerability markers.
Collapse
Affiliation(s)
- Olga A. Novikova
- “E. Meshalkin National Medical Research Center”, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Zhanna K. Nazarkina
- Laboratory of Molecular Medicine, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Anna V. Cherepanova
- “E. Meshalkin National Medical Research Center”, Ministry of Health of the Russian Federation, Novosibirsk, Russia
- Laboratory of Molecular Medicine, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- * E-mail:
| | - Petr P. Laktionov
- Laboratory of Genomics, SB RAS Institute of Molecular and Cellular Biology, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Boris P. Chelobanov
- Laboratory of Molecular Medicine, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Ivan S. Murashov
- “E. Meshalkin National Medical Research Center”, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | | | - Evgeny A. Pokushalov
- “E. Meshalkin National Medical Research Center”, Ministry of Health of the Russian Federation, Novosibirsk, Russia
- Laboratory of Molecular Medicine, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Andrey A. Karpenko
- “E. Meshalkin National Medical Research Center”, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Pavel P. Laktionov
- “E. Meshalkin National Medical Research Center”, Ministry of Health of the Russian Federation, Novosibirsk, Russia
- Laboratory of Molecular Medicine, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| |
Collapse
|
18
|
Guo ZY, Zhang B, Yan YH, Gao SS, Liu JJ, Xu L, Hui PJ. Specific matrix metalloproteinases and calcification factors are associated with the vulnerability of human carotid plaque. Exp Ther Med 2018; 16:2071-2079. [PMID: 30186442 DOI: 10.3892/etm.2018.6424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 04/13/2018] [Indexed: 12/20/2022] Open
Abstract
The rupture of atherosclerotic plaque provokes the majority of acute cerebrovascular events. Studies have demonstrated that various matrix metalloproteinases (MMPs) may promote atherosclerotic plaque progression and rupture. However, results have been incongruous and the mechanisms of this remain obscured. Therefore, in the current study, carotid plaques were characterized by assessing the levels of MMPs and calcification factors, and evaluating their association with plaque vulnerability. Human carotid plaques were obtained from carotid endarterectomies, and classified into stable and vulnerable groups by ultrasonography and histological analyses. The mRNA and protein levels of MMPs, vascular endothelial growth factor (VEGF), bone sialoprotein 2 (BSP) and osteopontin were investigated by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Immunohistochemistry was used to localize MMP-2 and MMP-14 in stable and vulnerable plaques. The activation of various associated signaling pathways was also investigated using western blotting. The mRNA levels of MMP-2, -7, -9 and -14 were elevated in vulnerable plaques, among which expression of MMP-2 and -14 were the highest. Consistent with the mRNA levels, the protein levels of MMP-2 and -14 were also elevated. Immunohistochemistry also demonstrated positive staining of MMP-2 and MMP-14 in vulnerable plaques. Factors that indicate neovascularization and calcification, including VEGF and BSP, were concurrently elevated in vulnerable plaques. In addition, the protein levels of extracellular regulated kinase (ERK) and protein kinase C (PKC) were upregulated in vulnerable plaques. The current study provides novel insights into the MMP profiles of vulnerability plaques, and may assist in the development of novel methods for the diagnosis of plaque vulnerability and the prevention of plaque rupture.
Collapse
Affiliation(s)
- Zhou-Ying Guo
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Department of Ultrasound, The First Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Bai Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yan-Hong Yan
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Shang-Shang Gao
- Department of Biochemical and Molecular of Medical College, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jing-Jing Liu
- Department of Biochemical and Molecular of Medical College, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lan Xu
- Department of Biochemical and Molecular of Medical College, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Pin-Jing Hui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
19
|
Nejadtaghi M, Jafari H, Farrokhi E, Samani KG. Familial Colorectal Cancer Type X (FCCTX) and the correlation with various genes-A systematic review. Curr Probl Cancer 2017; 41:388-397. [PMID: 29096939 DOI: 10.1016/j.currproblcancer.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 05/10/2017] [Accepted: 10/12/2017] [Indexed: 02/09/2023]
Abstract
Familial Colorectal Cancer Type X (FCCTX) is a type of hereditary nonpolyposis colorectal cancer in accordance to Amsterdam criteria-1 for Lynch syndrome, with no related mutation in mismatch repair gene. FCCTX is microsatellite stable and is accounted for 40% of families with Amsterdam criteria-1 with a high age of onset. Thus, the carcinogenesis of FCCTX is different compared to Lynch syndrome. In addition to the microsatellite stability and the presence of less predominant tumors in proximal colon, various clinical features have also been associated with FCCTX in comparison with Lynch syndrome such as no increased risk of extra-colonic cancers, older age of diagnosis and higher adenoma/carcinoma rate. Genetic etiology of this type of cancer which is autosomal dominant is unknown. In this review, we focus on the genes and their variants identified in this type of CRC. In order to find out the correlation between FCCTX and various genes database such as PubMed and PMC, search engine such as Google scholar and portals such as Springer and Elsevier have been searched. Based on our literature search, several studies suggest that FCCTX is a heterogeneous type of disease with different genetic variants. Recent studies describe the correlation between FCCTX and genes such as BRCA2, SEMA4, NTS, RASSF9, GALNT12, KRAS, BRAF, APC, BMPR1A, and RPS20. Considering the fact that BRCA2 has the highest mutation rate (60%) and is one of the most crucial DNA repair genes, it will be considered as a big role player in this type of cancer in comparison with other genes.
Collapse
Affiliation(s)
- Mahdieh Nejadtaghi
- Cellular and Molecular Research Center, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Hamideh Jafari
- Cellular and Molecular Research Center, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Effat Farrokhi
- Cellular and Molecular Research Center, Shahrekord University of Medical Science, Shahrekord, Iran.
| | - Keihan Ghatreh Samani
- Clinical Biochemistry Research Center, Shahrekord University of Medical Science, Shahrekord, Iran
| |
Collapse
|
20
|
Jiang B, Suen R, Wang JJ, Zhang ZJ, Wertheim JA, Ameer GA. Vascular scaffolds with enhanced antioxidant activity inhibit graft calcification. Biomaterials 2017; 144:166-175. [PMID: 28841463 DOI: 10.1016/j.biomaterials.2017.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/08/2017] [Accepted: 08/13/2017] [Indexed: 10/19/2022]
Abstract
There is a need for off-the-shelf, small-diameter vascular grafts that are safe and exhibit high long-term patency. Decellularized tissues can potentially be used as vascular grafts; however, thrombogenic and unpredictable remodeling properties such as intimal hyperplasia and calcification are concerns that hinder their clinical use. The objective of this study was to investigate the long-term function and remodeling of extracellular matrix (ECM)-based vascular grafts composited with antioxidant poly(1, 8-octamethylene-citrate-co-cysteine) (POCC) with or without immobilized heparin. Rat aortas were decellularized to create the following vascular grafts: 1) ECM hybridized with POCC (Poly-ECM), 2) Poly-ECM subsequently functionalized with heparin (Poly-ECM-Hep), and 3) non-modified vascular ECM. Grafts were evaluated as interposition grafts in the abdominal aorta of adult rats at three months. All grafts displayed antioxidant activity, were patent, and exhibited minimal intramural cell infiltration with varying degrees of calcification. Areas of calcification co-localized with osteochondrogenic differentiation of vascular smooth muscle cells, lipid peroxidation, oxidized DNA damage, and cell apoptosis, suggesting an important role for oxidative stress in the calcification of grafts. The extent of calcification within grafts was inversely proportional to their antioxidant activity: Poly-ECM-Hep > ECM > Poly-ECM. The incorporation of antioxidants into vascular grafts may be a viable strategy to inhibit degenerative changes.
Collapse
Affiliation(s)
- Bin Jiang
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA; Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Rachel Suen
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, 60208, USA
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zheng J Zhang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jason A Wertheim
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA; Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Department of Surgery, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA; Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Guillermo A Ameer
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA; Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
21
|
Byon CH, Heath JM, Chen Y. Redox signaling in cardiovascular pathophysiology: A focus on hydrogen peroxide and vascular smooth muscle cells. Redox Biol 2016; 9:244-253. [PMID: 27591403 PMCID: PMC5011184 DOI: 10.1016/j.redox.2016.08.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress represents excessive intracellular levels of reactive oxygen species (ROS), which plays a major role in the pathogenesis of cardiovascular disease. Besides having a critical impact on the development and progression of vascular pathologies including atherosclerosis and diabetic vasculopathy, oxidative stress also regulates physiological signaling processes. As a cell permeable ROS generated by cellular metabolism involved in intracellular signaling, hydrogen peroxide (H2O2) exerts tremendous impact on cardiovascular pathophysiology. Under pathological conditions, increased oxidase activities and/or impaired antioxidant systems results in uncontrolled production of ROS. In a pro-oxidant environment, vascular smooth muscle cells (VSMC) undergo phenotypic changes which can lead to the development of vascular dysfunction such as vascular inflammation and calcification. Investigations are ongoing to elucidate the mechanisms for cardiovascular disorders induced by oxidative stress. This review mainly focuses on the role of H2O2 in regulating physiological and pathological signals in VSMC.
Collapse
Affiliation(s)
| | - Jack M Heath
- Department of Pathology, Birmingham, AL 35294, USA
| | - Yabing Chen
- Department of Pathology, Birmingham, AL 35294, USA; University of Alabama at Birmingham, and the Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
22
|
Wang L, Ma L, Pang S, Huang J, Yan B. Sequence Variants of SIRT6 Gene Promoter in Myocardial Infarction. Genet Test Mol Biomarkers 2016; 20:185-90. [PMID: 26886147 DOI: 10.1089/gtmb.2015.0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIMS Coronary artery disease (CAD), including myocardial infarction (MI), is a common complex disease caused by atherosclerosis. Although more than 50 genetic variants have been associated with CAD, these loci collectively account for only 10% of CAD cases. Genetic variants of low and rare frequencies have been proposed as the main causes of CAD. SIRT6, one of the highly conserved NAD-dependent class III deacetylases, has been implicated in cardiovascular diseases. Considering the important roles that SIRT6 plays in the cardiovascular system, inflammation, and lipid and cholesterol metabolism, genetic variants were hypothesized to contribute to MI development. METHODS The promoter regions of the SIRT6 gene were genetically analyzed in large cohorts of MI patients (n = 371) and ethnically-matched controls (n = 383). RESULTS A total of 15 DNA sequence variants (DSVs) were identified, including seven single-nucleotide polymorphisms (SNPs). Two novel heterozygous DSVs, g.4183823G>C and g.4183742G>A, were identified in two MI patients but in none of the controls. Two SNPs, g.4183685T>C (rs4359565) and g.4182942C>A (rs3760905), were found in MI patients with significantly higher frequencies compared with controls. CONCLUSIONS These DSVs identified in MI patients may alter the transcriptional activity of the SIRT6 gene promoter and alter SIRT6 levels which might contribute to the risk of MI.
Collapse
Affiliation(s)
- Lekun Wang
- 1 College of Clinical Medicine, Jining Medical University , Jining, China
| | - Ling Ma
- 2 Division of Cardiology, Affiliated Hospital of Jining Medical University, Jining Medical University , Jining, China
| | - Shuchao Pang
- 3 Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University , Jining, China
| | - Jian Huang
- 3 Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University , Jining, China
| | - Bo Yan
- 3 Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University , Jining, China .,4 Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University , Jining, China
| |
Collapse
|
23
|
Gargiulo S, Gamba P, Testa G, Leonarduzzi G, Poli G. The role of oxysterols in vascular ageing. J Physiol 2016; 594:2095-113. [PMID: 26648329 DOI: 10.1113/jp271168] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/06/2015] [Indexed: 12/24/2022] Open
Abstract
The ageing endothelium progressively loses its remarkable and crucial ability to maintain homeostasis of the vasculature, as it acquires a proinflammatory phenotype. Cellular and structural changes gradually accumulate in the blood vessels, and markedly in artery walls. Most changes in aged arteries are comparable to those occurring during the atherogenic process, the latter being more marked: pro-oxidant and proinflammatory molecules, mainly deriving from or triggered by oxidized low density lipoproteins (oxLDLs), are undoubtedly a major driving force of this process. Oxysterols, quantitatively relevant components of oxLDLs, are likely candidate molecules in the pathogenesis of vascular ageing, because of their marked pro-oxidant, proinflammatory and proapoptotic properties. An increasing bulk of experimental data point to the contribution of a variety of oxysterols of pathophysiological interest, also in the age-related genesis of endothelium dysfunction, intimal thickening due to lipid accumulation, and smooth muscle cell migration and arterial stiffness due to increasing collagen deposition and calcification. This review provides an updated analysis of the molecular mechanisms whereby oxysterols accumulating in the wall of ageing blood vessels may 'activate' endothelial and monocytic cells, through expression of an inflammatory phenotype, and 'convince' smooth muscle cells to proliferate, migrate and, above all, to act as fibroblast-like cells.
Collapse
Affiliation(s)
- Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| |
Collapse
|