1
|
Amino Acid Substitution within Seven-Octapeptide Repeat Insertions in the Prion Protein Gene Associated with Short-Term Course. Viruses 2022; 14:v14102245. [PMID: 36298800 PMCID: PMC9609758 DOI: 10.3390/v14102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
The majority of seven-octapeptide repeat insertion (7-OPRI) carriers exhibit relatively early onset and a slowly progressive course. We have presented three cases of 7-OPRI, including two that are rapidly progressing, and compared the clinical and ancillary characteristics of the short-term and long-term disease course, as well as factors that influence disease course. The clinical and ancillary features of three new 7-OPRI patients in a Chinese pedigree were analyzed. Global data on 7-OPRI cases were then collected by reviewing the literature, and the cases were grouped according to clinical duration as per the WHO sCJD criteria, with a two-year cut-off. A Chinese pedigree has a glycine-to-glutamate substitution within the 7-OPRI insertion, which enhances the hydrophilicity of the prion protein. Two cases in this pedigree had a short disease course (consistent with the typical clinical and ancillary features of sCJD). In addition, the members of this pedigree had a later onset (p < 0.001) and shorter disease course (p < 0.001) compared to previously reported 7-OPRI cases with 129 cis-M and a similar age of onset and disease course to that of cases with 129 cis-V. The 7-OPRI cases with a shorter clinical course (n = 4) had a later onset (p = 0.021), higher rate of hyperintensity on MRI (p = 0.029) and higher frequency of 129 cis-V (p = 0.066) compared to those with a longer clinical course (n = 13). The clinical presentation of 7-OPRI is significantly heterogeneous. Codon 129 cis-V and amino acid substitution within repeat insertions are possible contributors to the short-term disease course of 7-OPRI.
Collapse
|
2
|
Shi Q, Chen C, Xiao K, Zhou W, Gao LP, Chen DD, Wu YZ, Wang Y, Hu C, Gao C, Dong XP. Genetic Prion Disease: Insight from the Features and Experience of China National Surveillance for Creutzfeldt-Jakob Disease. Neurosci Bull 2021; 37:1570-1582. [PMID: 34487324 DOI: 10.1007/s12264-021-00764-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/11/2021] [Indexed: 01/07/2023] Open
Abstract
Human genetic prion diseases (gPrDs) are directly associated with mutations and insertions in the PRNP (Prion Protein) gene. We collected and analyzed the data of 218 Chinese gPrD patients identified between Jan 2006 and June 2020. Nineteen different subtypes were identified and gPrDs accounted for 10.9% of all diagnosed PrDs within the same period. Some subtypes of gPrDs showed a degree of geographic association. The age at onset of Chinese gPrDs peaked in the 50-59 year group. Gerstmann-Sträussler-Scheinker syndrome (GSS) and fatal familial insomnia (FFI) cases usually displayed clinical symptoms earlier than genetic Creutzfeldt-Jakob disease (gCJD) patients with point mutations. A family history was more frequently recalled in P105L GSS and D178N FFI patients than T188K and E200K patients. None of the E196A gCJD patients reported a family history. The gCJD cases with point mutations always developed clinical manifestations typical of sporadic CJD (sCJD). EEG examination was not sensitive for gPrDs. sCJD-associated abnormalities on MRI were found in high proportions of GSS and gCJD patients. CSF 14-3-3 positivity was frequently detected in gCJD patients. Increased CSF tau was found in more than half of FFI and T188K gCJD cases, and an even higher proportion of E196A and E200K gCJD patients. 63.6% of P105L GSS cases showed a positive reaction in cerebrospinal fluid RT-QuIC. GSS and FFI cases had longer durations than most subtypes of gCJD. This is one of the largest studies of gPrDs in East Asians, and the illness profile of Chinese gPrDs is clearly distinct. Extremely high proportions of T188K and E196A occur among Chinese gPrDs; these mutations are rarely reported in Caucasians and Japanese.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430064, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Wei Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Li-Ping Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Dong-Dong Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yue-Zhang Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuan Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Chao Hu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430064, China. .,China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Cali I, Cracco L, Saracino D, Occhipinti R, Coppola C, Appleby BS, Puoti G. Case Report: Histopathology and Prion Protein Molecular Properties in Inherited Prion Disease With a De Novo Seven-Octapeptide Repeat Insertion. Front Cell Neurosci 2020; 14:150. [PMID: 32733203 PMCID: PMC7362343 DOI: 10.3389/fncel.2020.00150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/05/2020] [Indexed: 12/27/2022] Open
Abstract
The insertion of additional 168 base pair containing seven octapeptide repeats in the prion protein (PrP) gene region spanning residues 51–91 is associated with inherited prion disease. In 2008, we reported the clinical features of a novel de novo seven-octapeptide repeat insertion (7-OPRI) mutation coupled with codon 129 methionine (M) homozygosity in the PrP gene of a 19-year-old man presenting with psychosis and atypical dementia, and 16-year survival. Here, we describe the histopathological and PrP molecular properties in the autopsied brain of this patient. Histopathological examination revealed widespread brain atrophy, focal spongiform degeneration (SD), cortical PrP plaques, and elongated PrP formations in the cerebellum. Overall, these histopathological features resemble those described in a Belgian pedigree with 7-OPRI mutation except for the presence of PrP plaques in our case, which are morphologically different from the multicore plaques described in some OPRI mutations and in Gerstmann–Sträussler–Scheinker (GSS) syndrome. The comparative characterization of the detergent-soluble and detergent-insoluble PrP in our patient and in sporadic Creutzfeldt–Jakob disease (CJD) revealed distinct molecular signatures. Proteinase K digestion of the pathogenic, disease-associated PrP (PrPD) revealed PrPD type 1 in the cerebral cortex and mixed PrPD types 1 and 2 in the cerebellum. Altogether, the present study outlines the importance of assessing the phenotypical and PrP biochemical properties of these rare conditions, thereby widening the spectrum of the phenotypic heterogeneity of the 7-OPRI insertion mutations. Further studies are needed to determine whether distinct conformers of PrPD are associated with two major clinico-histopathological phenotypes in prion disease with 7-OPRI.
Collapse
Affiliation(s)
- Ignazio Cali
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,National Prion Disease Pathology Surveillance Center (NPDPSC), School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Laura Cracco
- Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Dario Saracino
- Division of Neurology, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Prion Disease Diagnosis and Surveillance Center (PDDSC), University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Cinzia Coppola
- Division of Neurology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Brian Stephen Appleby
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,National Prion Disease Pathology Surveillance Center (NPDPSC), School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Gianfranco Puoti
- Division of Neurology, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Prion Disease Diagnosis and Surveillance Center (PDDSC), University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
4
|
Abstract
Genetic prion diseases (gPrDs) caused by mutations in the prion protein gene (PRNP) have been classified as genetic Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker disease, or fatal familial insomnia. Mutations in PRNP can be missense, nonsense, and/or octapeptide repeat insertions or, possibly, deletions. These mutations can produce diverse clinical features. They may also show varying ancillary testing results and neuropathological findings. Although the majority of gPrDs have a rapid progression with a short survival time of a few months, many also present as ataxic or parkinsonian disorders, which have a slower decline over a few to several years. A few very rare mutations manifest as neuropsychiatric disorders, with systemic symptoms that include gastrointestinal disorders and neuropathy; these forms can progress over years to decades. In this review, we classify gPrDs as rapid, slow, or mixed types based on their typical rate of progression and duration, and we review the broad spectrum of phenotypes manifested by these diseases.
Collapse
Affiliation(s)
- Mee-Ohk Kim
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Leonel T Takada
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo, São Paulo, 05403-900, Brazil
| | - Katherine Wong
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Sven A Forner
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Michael D Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
5
|
Takada LT, Kim MO, Metcalf S, Gala II, Geschwind MD. Prion disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:441-464. [DOI: 10.1016/b978-0-444-64076-5.00029-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Wang SB, Shi Q, Xu Y, Xie WL, Zhang J, Tian C, Guo Y, Wang K, Zhang BY, Chen C, Gao C, Dong XP. Protein disulfide isomerase regulates endoplasmic reticulum stress and the apoptotic process during prion infection and PrP mutant-induced cytotoxicity. PLoS One 2012; 7:e38221. [PMID: 22685557 PMCID: PMC3369880 DOI: 10.1371/journal.pone.0038221] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 05/01/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Protein disulfide isomerase (PDI), is sorted to be enzymatic chaperone for reconstructing misfolded protein in endoplasmic reticulum lumen. Recently, PDI has been identified as a link between misfolded protein and neuron apoptosis. However, the potential for PDI to be involved in the pathogenesis of prion disease remains unknown. In this study, we propose that PDI may function as a pleiotropic regulator in the cytotoxicity induced by mutated prion proteins and in the pathogenesis of prion diseases. METHODOLOGY/PRINCIPAL FINDINGS To elucidate potential alterations of PDI in prion diseases, the levels of PDI and relevant apoptotic executors in 263K infected hamsters brain tissues were evaluated with the use of Western blots. Abnormal upregulation of PDI, Grp78 and Grp58 was detected. Dynamic assays of PDI alteration identified that the upregulation of PDI started at the early stage and persistently increased till later stage. Obvious increases of PDI and Grp78 levels were also observed in cultured cells transiently expressing PrP mutants, PrP-KDEL or PrP-PG15, accompanied by significant cytotoxicities. Excessive expression of PDI partially eased ER stress and cell apoptosis caused by accumulation of PrP-KDEL, but had less effect on cytotoxicity induced by PrP-PG15. Knockdown of endogenous PDI significantly amended cytotoxicity of PrP-PG15, but had little influence on that of PrP-KDEL. A series of membrane potential assays found that apoptosis induced by misfolded PrP proteins could be regulated by PDI via mitochondrial dysfunction. Moreover, biotin-switch assays demonstrated active S-nitrosylated modifications of PDI (SNO-PDI) both in the brains of scrapie-infected rodents and in the cells with misfolded PrP proteins. CONCLUSION/SIGNIFICANCE Current data in this study highlight that PDI and its relevant executors may function as a pleiotropic regulator in the processes of different misfolded PrP proteins and at different stages during prion infection. SNO-PDI may feed as an accomplice for PDI apoptosis.
Collapse
Affiliation(s)
- Shao-Bin Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yin Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Wu-Ling Xie
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jin Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yan Guo
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ke Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
Jansen C, Voet W, Head MW, Parchi P, Yull H, Verrips A, Wesseling P, Meulstee J, Baas F, van Gool WA, Ironside JW, Rozemuller AJM. A novel seven-octapeptide repeat insertion in the prion protein gene (PRNP) in a Dutch pedigree with Gerstmann-Sträussler-Scheinker disease phenotype: comparison with similar cases from the literature. Acta Neuropathol 2011; 121:59-68. [PMID: 20198483 PMCID: PMC3015204 DOI: 10.1007/s00401-010-0656-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 02/05/2010] [Accepted: 02/13/2010] [Indexed: 11/27/2022]
Abstract
Human prion diseases can be sporadic, inherited or acquired by infection and show considerable phenotypic heterogeneity. We describe the clinical, histopathological and pathological prion protein (PrPSc) characteristics of a Dutch family with a novel 7-octapeptide repeat insertion (7-OPRI) in PRNP, the gene encoding the prion protein (PrP). Clinical features were available in four, neuropathological features in three and biochemical characteristics in two members of this family. The clinical phenotype was characterized by slowly progressive cognitive decline, personality change, lethargy, depression with anxiety and panic attacks, apraxia and a hypokinetic-rigid syndrome. Neuropathological findings consisted of numerous multi- and unicentric amyloid plaques throughout the cerebrum and cerebellum with varying degrees of spongiform degeneration. Genetic and molecular studies were performed in two male family members. One of them was homozygous for valine and the other heterozygous for methionine and valine at codon 129 of PRNP. Sequence analysis identified a novel 168 bp insertion [R2–R2–R2–R2–R3g–R2–R2] in the octapeptide repeat region of PRNP. Both patients carried the mutation on the allele with valine at codon 129. Western blot analysis showed type 1 PrPSc in both patients and detected a smaller ~8 kDa PrPSc fragment in the cerebellum in one patient. The features of this Dutch kindred define an unusual neuropathological phenotype and a novel PRNP haplotype among the previously documented 7-OPRI mutations, further expanding the spectrum of genotype–phenotype correlations in inherited prion diseases.
Collapse
Affiliation(s)
- Casper Jansen
- Dutch Surveillance Centre for Prion Diseases, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li XL, Dong CF, Wang GR, Zhou RM, Shi Q, Tian C, Gao C, Mei GY, Chen C, Xu K, Han J, Dong XP. Manganese-induced changes of the biochemical characteristics of the recombinant wild-type and mutant PrPs. Med Microbiol Immunol 2009; 198:239-45. [PMID: 19633867 DOI: 10.1007/s00430-009-0120-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Indexed: 11/26/2022]
Abstract
Manganese may play some roles in the pathogenesis of prion diseases. In this study, recombinant human wild-type (WT) PrP and PrP mutants with deleted or inserted octarepeats were exposed to manganese, and their biochemical and biophysical characteristics were evaluated by proteinase K (PK) digestion, sedimentation experiments, transmission electron microscopy and circular dichroism. It demonstrated that incubation of manganese remarkably increased PK-resistances, protein aggregations and beta-sheet contents of the PrPs. Moreover, the PrP mutants of inserted or deleted octarepeats were much vulnerable to the influence of manganese, which showed obviously more aggregation and higher beta-sheet content than that of WT-PrP. It highlights that the effect of manganese on the PrP seems to lie on the incorrectness of the octarepeats numbers. The association of the octarepeats number of PrP with manganese may further provide insight into the unresolved biological function of PrP in the neurons.
Collapse
Affiliation(s)
- Xiao-Li Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|