1
|
Prentiss S, Snapp H, Sykes KJ, Smeal M, Restrepo A, Staecker H. Post-operative patient perception of decisional regret in cochlear implant recipients. Cochlear Implants Int 2024; 25:197-204. [PMID: 39031768 DOI: 10.1080/14670100.2024.2376405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
IMPORTANCE Decision regret post-surgery has has been linked to health outcomes for a number of elective procedures but is understudied in cochlear implantation satisfaction. Theunpredictability in outcomes may lead to unmet expectations by the recipient. This study is the first study to investigate the decision regret concept in cochlear implant recipients. OBJECTIVE Tto investigate post-operative decision regret in (CI) recipients. DESIGN This was a prospective cohort study using the validated Ottawa Decision Regret Scale, and whether the CI met the patient's expectations. Variables potentially associated with decision regret including patient demographics, post-operative speech perception scores, duration of deafness, duration of CI use and age were analyzed using the logistic regression model. SETTING This was a multi-center study. Participants were recruited and enrolled from the University of Miami and the University of Kansas in an outpatient setting. PARTICIPANTS Adult, English-speaking CI recipients with at least 6 months of listening experience with their implant. RESULTS Out of 173 58% reported no regret, 27% reported mild, and 15% reported moderate-to-strong regret. Expectations were met in 77% while not meeting expectations in 14%. The remaining 8% were neutral. Decisional regret was significantly associated (p = 0.02) with poor post-operative speech perception. No other variables were associated with regret. CONCLUSIONS Post-operative decision regret was reported by 42% of CI recipients. Poor speech perception abilities were associated with increased risk of regret. Further research is required to identify regret risks and provide resources to mitigate regret in CI recipients.
Collapse
Affiliation(s)
- Sandra Prentiss
- Department of Otolaryngology Ear Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hillary Snapp
- Department of Otolaryngology Ear Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
2
|
Leong S, Aksit A, Szeto B, Feng SJ, Ji X, Soni RK, Olson ES, Kysar JW, Lalwani AK. Anatomic, Physiologic, and Proteomic Consequences of Repeated Microneedle-Mediated Perforations of the Round Window Membrane. Hear Res 2023; 432:108739. [PMID: 36966687 DOI: 10.1016/j.heares.2023.108739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/20/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND We have developed 3D-printed microneedle technology for diagnostic aspiration of perilymph and intracochlear delivery of therapeutic agents. Single microneedle-mediated round window membrane (RWM) perforation does not cause hearing loss, heals within 48-72 h, and yields sufficient perilymph for proteomic analysis. In this study, we investigate the anatomic, physiologic, and proteomic consequences of repeated microneedle-mediated perforations of the same RWM at different timepoints. METHODS 100-μm-diameter hollow microneedles were fabricated using two-photon polymerization (2PP) lithography. The tympanic bullae of Hartley guinea pigs (n = 8) were opened with adequate exposure of the RWM. Distortion product otoacoustic emissions (DPOAE) and compound action potential (CAP) were recorded to assess hearing. The hollow microneedle was introduced into the bulla and the RWM was perforated; 1 μL of perilymph was aspirated from the cochlea over the course of 45 s. 72 h later, the above procedure was repeated with aspiration of an additional 1 μL of perilymph. 72 h after the second perforation, RWMs were harvested for confocal imaging. Perilymph proteomic analysis was completed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Two perforations and aspirations were performed in 8 guinea pigs. In six, CAP, DPOAE, and proteomic analysis were obtained; in one, only CAP and DPOAE results were obtained; and in one, only proteomics results were obtained. Hearing tests demonstrated mild hearing loss at 1-4 kHz and 28 kHz, most consistent with conductive hearing loss. Confocal microscopy demonstrated complete healing of all perforations with full reconstitution of the RWM. Perilymph proteomic analysis identified 1855 proteins across 14 samples. The inner ear protein cochlin was observed in all samples, indicating successful aspiration of perilymph. Non-adjusted paired t-tests with p < 0.01 revealed significant changes in 13 of 1855 identified proteins (0.7%) between the first and second aspirations. CONCLUSIONS We demonstrate that repeated microneedle perforation of the RWM is feasible, allows for complete healing of the RWM, and minimally changes the proteomic expression profile. Thus, microneedle-mediated repeated aspirations in a single animal can be used to monitor the response to inner ear treatments over time.
Collapse
|
3
|
Wang H, Sun R, Xu N, Wang X, Bao M, Li X, Li J, Lin A, Feng J. Untargeted metabolomics of the cochleae from two laryngeally echolocating bats. Front Mol Biosci 2023; 10:1171366. [PMID: 37152899 PMCID: PMC10154556 DOI: 10.3389/fmolb.2023.1171366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
High-frequency hearing is regarded as one of the most functionally important traits in laryngeally echolocating bats. Abundant candidate hearing-related genes have been identified to be the important genetic bases underlying high-frequency hearing for laryngeally echolocating bats, however, extensive metabolites presented in the cochleae have not been studied. In this study, we identified 4,717 annotated metabolites in the cochleae of two typical laryngeally echolocating bats using the liquid chromatography-mass spectroscopy technology, metabolites classified as amino acids, peptides, and fatty acid esters were identified as the most abundant in the cochleae of these two echolocating bat species, Rhinolophus sinicus and Vespertilio sinensis. Furthermore, 357 metabolites were identified as significant differentially accumulated (adjusted p-value <0.05) in the cochleae of these two bat species with distinct echolocating dominant frequencies. Downstream KEGG enrichment analyses indicated that multiple biological processes, including signaling pathways, nervous system, and metabolic process, were putatively different in the cochleae of R. sinicus and V. sinensis. For the first time, this study investigated the extensive metabolites and associated biological pathways in the cochleae of two laryngeal echolocating bats and expanded our knowledge of the metabolic molecular bases underlying high-frequency hearing in the cochleae of echolocating bats.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
- *Correspondence: Hui Wang, ; Jiang Feng,
| | - Ruyi Sun
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Ningning Xu
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Xue Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Mingyue Bao
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Xin Li
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Jiqian Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- *Correspondence: Hui Wang, ; Jiang Feng,
| |
Collapse
|
4
|
The Augmented Cochlear Implant: a Convergence of Drugs and Cochlear Implantation for the Treatment of Hearing Loss. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-022-00426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
St. Peter M, Brough DE, Lawrence A, Nelson-Brantley J, Huang P, Harre J, Warnecke A, Staecker H. Improving Control of Gene Therapy-Based Neurotrophin Delivery for Inner Ear Applications. Front Bioeng Biotechnol 2022; 10:892969. [PMID: 35721868 PMCID: PMC9204055 DOI: 10.3389/fbioe.2022.892969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Survival and integrity of the spiral ganglion is vital for hearing in background noise and for optimal functioning of cochlear implants. Numerous studies have demonstrated that supplementation of supraphysiologic levels of the neurotrophins BDNF and NT-3 by pumps or gene therapy strategies supports spiral ganglion survival. The endogenous physiological levels of growth factors within the inner ear, although difficult to determine, are likely extremely low within the normal inner ear. Thus, novel approaches for the long-term low-level delivery of neurotrophins may be advantageous. Objectives: This study aimed to evaluate the long-term effects of gene therapy-based low-level neurotrophin supplementation on spiral ganglion survival. Using an adenovirus serotype 28-derived adenovector delivery system, the herpes latency promoter, a weak, long expressing promoter system, has been used to deliver the BDNF or NTF3 genes to the inner ear after neomycin-induced ototoxic injury in mice. Results: Treatment of the adult mouse inner ear with neomycin resulted in acute and chronic changes in endogenous neurotrophic factor gene expression and led to a degeneration of spiral ganglion cells. Increased survival of spiral ganglion cells after adenoviral delivery of BDNF or NTF3 to the inner ear was observed. Expression of BDNF and NT-3 could be demonstrated in the damaged organ of Corti after gene delivery. Hearing loss due to overexpression of neurotrophins in the normal hearing ear was avoided when using this novel vector–promoter combination. Conclusion: Combining supporting cell-specific gene delivery via the adenovirus serotype 28 vector with a low-strength long expressing promoter potentially can provide long-term neurotrophin delivery to the damaged inner ear.
Collapse
Affiliation(s)
| | | | - Anna Lawrence
- Department of Otolaryngology, University of Kansas School of Medicine, Kansas City, KS, United States
| | | | - Peixin Huang
- Department of Otolaryngology, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Jennifer Harre
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology, University of Kansas School of Medicine, Kansas City, KS, United States
- *Correspondence: Hinrich Staecker,
| |
Collapse
|
6
|
Wichova H, Shew M, Nelson-Brantley J, Warnecke A, Prentiss S, Staecker H. MicroRNA Profiling in the Perilymph of Cochlear Implant Patients: Identifying Markers that Correlate to Audiological Outcomes. J Am Acad Audiol 2022; 32:627-635. [PMID: 35609590 DOI: 10.1055/s-0041-1742234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS MicroRNA (miRNA) expression profiles from human perilymph correlate to post cochlear implantation (CI) hearing outcomes. BACKGROUND The high inter-individual variability in speech perception among cochlear implant recipients is still poorly understood. MiRNA expression in perilymph can be used to characterize the molecular processes underlying inner ear disease and to predict performance with a cochlear implant. METHODS Perilymph collected during CI from 17 patients was analyzed using microarrays. MiRNAs were identified and multivariable analysis using consonant-nucleus-consonant testing at 6 and 18 months post implant activation was performed. Variables analyzed included age, gender, preoperative pure tone average (PTA), and preoperative speech discrimination (word recognition [WR]). Gene ontology analysis was performed to identify potential functional implications of changes in the identified miRNAs. RESULTS Distinct miRNA profiles correlated to preoperative PTA and WR. Patients classified as poor performers showed downregulation of six miRNAs that potentially regulate pathways related to neuronal function and cell survival. CONCLUSION Individual miRNA profiles can be identified in microvolumes of perilymph. Distinct non-coding RNA expression profiles correlate to preoperative hearing and postoperative cochlear implant outcomes.
Collapse
Affiliation(s)
| | - Matthew Shew
- Department of Otolaryngology Head and Neck Surgery, Washington University School of Medicine in St. Louis, Missouri
| | - Jennifer Nelson-Brantley
- Department of Anatomy and Cell Biology, School of Medicine, University of Kanas, Kansas City, Kansas
| | - Athanasia Warnecke
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Sandra Prentiss
- Department of Otolaryngology Head and Neck Surgery, University of Miami School of Medicine, Miami, Florida
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City Kansas
| |
Collapse
|
7
|
Peter MS, Warnecke A, Staecker H. A Window of Opportunity: Perilymph Sampling from the Round Window Membrane Can Advance Inner Ear Diagnostics and Therapeutics. J Clin Med 2022; 11:jcm11020316. [PMID: 35054010 PMCID: PMC8781055 DOI: 10.3390/jcm11020316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
In the clinical setting, the pathophysiology of sensorineural hearing loss is poorly defined and there are currently no diagnostic tests available to differentiate between subtypes. This often leaves patients with generalized treatment options such as steroids, hearing aids, or cochlear implantation. The gold standard for localizing disease is direct biopsy or imaging of the affected tissue; however, the inaccessibility and fragility of the cochlea make these techniques difficult. Thus, the establishment of an indirect biopsy, a sampling of inner fluids, is needed to advance inner ear diagnostics and allow for the development of novel therapeutics for inner ear disease. A promising source is perilymph, an inner ear liquid that bathes multiple structures critical to sound transduction. Intraoperative perilymph sampling via the round window membrane of the cochlea has been successfully used to profile the proteome, metabolome, and transcriptome of the inner ear and is a potential source of biomarker discovery. Despite its potential to provide insight into inner ear pathologies, human perilymph sampling continues to be controversial and is currently performed only in conjunction with a planned procedure where the inner ear is opened. Here, we review the safety of procedures in which the inner ear is opened, highlight studies where perilymph analysis has advanced our knowledge of inner ear diseases, and finally propose that perilymph sampling could be done as a stand-alone procedure, thereby advancing our ability to accurately classify sensorineural hearing loss.
Collapse
Affiliation(s)
- Madeleine St. Peter
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Athanasia Warnecke
- Department of Otolaryngology Head and Neck Surgery, Hannover Medical School, D-30625 Hanover, Germany;
| | - Hinrich Staecker
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Correspondence:
| |
Collapse
|