1
|
Jin Y, Liu H, Chu L, Yang J, Li X, Zhou H, Jiang H, Shi L, Weeks J, Rainbolt J, Yang C, Xue T, Pan H, Deng Z, Xie C, Cui X, Ren Y. Initial therapeutic evidence of a borosilicate bioactive glass (BSG) and Fe 3O 4 magnetic nanoparticle scaffold on implant-associated Staphylococcal aureus bone infection. Bioact Mater 2024; 40:148-167. [PMID: 38962659 PMCID: PMC11220464 DOI: 10.1016/j.bioactmat.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Implant-associated Staphylococcus aureus (S. aureus) osteomyelitis is a severe challenge in orthopedics. While antibiotic-loaded bone cement is a standardized therapeutic approach for S. aureus osteomyelitis, it falls short in eradicating Staphylococcus abscess communities (SACs) and bacteria within osteocyte-lacuna canalicular network (OLCN) and repairing bone defects. To address limitations, we developed a borosilicate bioactive glass (BSG) combined with ferroferric oxide (Fe3O4) magnetic scaffold to enhance antibacterial efficacy and bone repair capabilities. We conducted comprehensive assessments of the osteoinductive, immunomodulatory, antibacterial properties, and thermal response of this scaffold, with or without an alternating magnetic field (AMF). Utilizing a well-established implant-related S. aureus tibial infection rabbit model, we evaluated its antibacterial performance in vivo. RNA transcriptome sequencing demonstrated that BSG + 5%Fe3O4 enhanced the immune response to bacteria and promoted osteogenic differentiation and mineralization of MSCs. Notably, BSG + 5%Fe3O4 upregulated gene expression of NOD-like receptor and TNF pathway in MSCs, alongside increased the expression of osteogenic factors (RUNX2, ALP and OCN) in vitro. Flow cytometry on macrophage exhibited a polarization effect towards M2, accompanied by upregulation of anti-inflammatory genes (TGF-β1 and IL-1Ra) and downregulation of pro-inflammatory genes (IL-6 and IL-1β) among macrophages. In vivo CT imaging revealed the absence of osteolysis and periosteal response in rabbits treated with BSG + 5%Fe3O4 + AMF at 42 days. Histological analysis indicated complete controls of SACs and bacteria within OLCN by day 42, along with new bone formation, signifying effective control of S. aureus osteomyelitis. Further investigations will focus on the in vivo biosafety and biological mechanism of this scaffold within infectious microenvironment.
Collapse
Affiliation(s)
- Ying Jin
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Hang Liu
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Lei Chu
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Jin Yang
- Department of Orthopaedics, Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Xiuyang Li
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
- Department of Orthopedics, The Seventh People's Hospital of Chongqing, The Central Hospital Affiliated to Chongqing University of Technology, Chongqing, 400054, PR China
| | - Hang Zhou
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Haitao Jiang
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Lei Shi
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Jason Weeks
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joshua Rainbolt
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Changjiang Yang
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Thomas Xue
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Haobo Pan
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Zhongliang Deng
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| | - Chao Xie
- Center for Musculoskeletal Research, Department of Orthopaedics & Physical Performance Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Xu Cui
- Shenzhen Key Laboratory of Marine Biomedical Materials, CAS-HK Joint Lab of Biomaterials, The Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Youliang Ren
- Department of Orthopaedics, Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing, 400010, PR China
| |
Collapse
|
2
|
Aljaafari HAS, Parnian P, Van Dyne J, Nuxoll E. Thermal susceptibility and antibiotic synergism of methicillin-resistant Staphylococcus aureus biofilms. BIOFOULING 2023; 39:516-526. [PMID: 37483168 PMCID: PMC11661211 DOI: 10.1080/08927014.2023.2234290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/30/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
Methicillin-Resistant Staphylococcus aureus (MRSA) biofilms are among the most dangerous infections on medical implants, typically requiring surgical explantation and replacement. This study investigated the thermal susceptibility of MRSA biofilms to thermal shocks from 60 to 80 °C for 1-30 min as well as the effect of various antibiotics (most notably methicillin) on thermal mitigation. Pre- and post-shock exposure to three different classes of antibiotics (ciprofloxacin, tobramycin, and methicillin) at concentrations ranging from 0.25 to 128 μg mL-1 were investigated. MRSA biofilms exhibited thermal susceptibility comparable to other common nosocomial pathogens, such as Pseudomonas aeruginosa, though with greater variability. Exposure to antibiotics of any class significantly decreased the degree of thermal shock required for reliable mitigation, including at subclinical concentration. These combined treatments reduced biofilm population more than the sum of thermal and chemical treatments alone, demonstrating synergism, while also indicating a critical population drop of ∼4.5 log10 beyond which the biofilms typically became non-viable.
Collapse
Affiliation(s)
- Haydar A. S. Aljaafari
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa, U.S
- Department of Chemical Engineering, University of Technology, Baghdad, Iraq
| | - Parham Parnian
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa, U.S
| | - Jaymes Van Dyne
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa, U.S
| | - Eric Nuxoll
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa, U.S
| |
Collapse
|
3
|
Dolete G, Ilie CI, Chircov C, Purcăreanu B, Motelica L, Moroșan A, Oprea OC, Ficai D, Andronescu E, Dițu LM. Synergistic Antimicrobial Activity of Magnetite and Vancomycin-Loaded Mesoporous Silica Embedded in Alginate Films. Gels 2023; 9:gels9040295. [PMID: 37102906 PMCID: PMC10137406 DOI: 10.3390/gels9040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
The aim of the present study was to obtain a hydrogel-based film as a carrier for the sustained and controlled release of vancomycin, an antibiotic commonly used in various types of infections. Considering the high-water solubility of vancomycin (>50 mg/mL) and the aqueous medium underlying the exudates, a prolonged release of vancomycin from an MCM-41 carrier was sought. The present work focused on the synthesis of malic acid coated magnetite (Fe3O4/malic) by co-precipitation, synthesis of MCM-41 by a sol-gel method and loading of MCM-41 with vancomycin, and their use in alginate films for wound dressing. The nanoparticles obtained were physically mixed and embedded in the alginate gel. Prior to incorporation, the nanoparticles were characterized by XRD, FT-IR and FT-Raman spectroscopy, TGA-DSC and DLS. The films were prepared by a simple casting method and were further cross-linked and examined for possible heterogeneities by means of FT-IR microscopy and SEM. The degree of swelling and the water vapor transmission rate were determined, considering their potential use as wound dressings. The obtained films show morpho-structural homogeneity, sustained release over 48 h and a strong synergistic enhancement of the antimicrobial activity as a consequence of the hybrid nature of these films. The antimicrobial efficacy was tested against S. aureus, two strains of E. faecalis (including vancomycin-resistant Enterococcus, VRE) and C. albicans. The incorporation of magnetite was also considered as an external triggering component in case the films were used as a magneto-responsive smart dressing to stimulate vancomycin diffusion.
Collapse
Affiliation(s)
- Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
| | - Bogdan Purcăreanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- BIOTEHNOS SA, Gorunului Street 3-5, 075100 Otopeni, Romania
| | - Ludmila Motelica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
| | - Alina Moroșan
- Department of Organic Chemistry “Costin Nenițescu”, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry, and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independenței 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Lia-Mara Dițu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 1–3 Aleea Portocalelor, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest, 91-95 Splaiul Independenței, 050095 Bucharest, Romania
| |
Collapse
|
4
|
Palau M, Muñoz E, Larrosa N, Gomis X, Márquez E, Len O, Almirante B, Gavaldà J. Hyperthermia Prevents In Vitro and In Vivo Biofilm Formation on Endotracheal Tubes. Microbiol Spectr 2023; 11:e0280722. [PMID: 36472442 PMCID: PMC9927397 DOI: 10.1128/spectrum.02807-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is currently an urgent need to find new strategies to tackle antimicrobial resistance and biofilm-related infections. This study has two aims. First, we evaluated the in vitro efficacy of hyperthermia in preventing biofilm formation on the surfaces of polyvinyl chloride discs. Second, we assessed the in vivo efficacy of hyperthermia in preventing biofilm formation in endotracheal tubes (ETTs) of a rabbit model. For the in vitro studies, nine clinical extensively drug-resistant/multidrug-resistant Gram-negative isolates of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa and three clinical methicillin-resistant Staphylococcus aureus strains were studied. For biofilm formation, an adhesion step of 30 or 90 min followed by a growth step of 24 h were performed with application of one, two, and three pulses at 42°C for 15 min each pulse after the adhesion step. For the in vivo studies, New Zealand rabbits were intubated with ETTs previously colonized with K. pneumoniae or P. aeruginosa strains, and three pulses at 42°C for 15 min were applied after the adhesion step. The application of three pulses at 42°C for 15 min each pulse was needed to achieve the prevention of the in vitro biofilm formation of 100% of the tested strains. The application of heat pulses in a rabbit intubation model led to biofilm prevention of 85% against two K. pneumoniae strains and 80% against two P. aeruginosa strains compared to the control group. Hyperthermia application through pulses at 42°C could be a new nonantibiotic strategy to prevent biofilm formation in ETTs. IMPORTANCE Biofilm-producing microorganisms are considered medically crucial since they cause 80% of the infections that occur in the human body. Medical devices such as endotracheal tubes (ETTs) can act as a reservoir for pathogens providing the surface to which microorganisms can adhere and cause biofilm-associated infections in critically ill patients. This biofilm has been related with the development of ventilator-associated pneumonia (VAP), with an incidence of 8 to 28%, a mortality rate up to 17% and its associated high extra costs. Although some VAP-preventive measures have been reported, they have not demonstrated a significant reduction of VAP incidence. Therefore, we present a new nonantibiotic strategy based on hyperthermia application to prevent biofilm formation inside ETTs. This technology could reduce VAP incidence, intubation duration, hospital and intensive care unit (ICU) length stays, and mortality rates. Consequently, this could decrease the antibiotics administered and influence the impact of antibiotic resistance in the ICU.
Collapse
Affiliation(s)
- Marta Palau
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute, Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Estela Muñoz
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute, Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Nieves Larrosa
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Xavier Gomis
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute, Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Márquez
- Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Oscar Len
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute, Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Benito Almirante
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute, Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Gavaldà
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute, Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Burden B, Rodriguez-Alvarez JS, Levi N, Gayzik FS. Application of survival analysis to model proliferation likelihood of Escherichia coli biofilm following laser-induced hyperthermia treatment. Front Bioeng Biotechnol 2023; 11:1001017. [PMID: 36761303 PMCID: PMC9903214 DOI: 10.3389/fbioe.2023.1001017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
Eighty percent of bacterial infections associated with living tissue and medical devices are linked to drug-resistant biofilms, leading to lengthy and costly recoveries. Laser-induced hyperthermia can disrupt cell proliferation within biofilms and increase susceptibility to antibiotics. However, there can be bacterial survival differences dependent upon laser irradiation times, and prolonged time at elevated temperature can damage healthy tissue. The objective of this study was to use survival analysis to model the impact of temperature increases on reducing viable biofilm bacteria. In vitro biofilms of Escherichia coli were grown on silicone discs or silicone doped with photothermal poly(3,4-ethylenedioxythiophene) hydrate (PEDOT) nanotubes, and subjected to laser-induced hyperthermia, using a 3 W continuous wave laser at 800 nm for varying times. The number of colony forming units per milliliter (CFU/mL) and maximum temperature were measured after each trial. Survival analysis was employed to estimate bacterial cell proliferation post-treatment to provide a quantitative framework for future studies evaluating photothermal inactivation of bacterial biofilms. The results demonstrate the first application of survival analysis for predicting the likelihood of bacterial cell proliferation based on temperature.
Collapse
Affiliation(s)
- Bradley Burden
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | | | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - F. Scott Gayzik
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, United States,*Correspondence: F. Scott Gayzik,
| |
Collapse
|
6
|
Rodriguez-Alvarez JS, Kratky L, Yates-Alston S, Sarkar S, Vogel K, Gutierrez-Aceves J, Levi N. A PEDOT nano-composite for hyperthermia and elimination of urological bacteria. BIOMATERIALS ADVANCES 2022; 139:212994. [PMID: 35882143 DOI: 10.1016/j.bioadv.2022.212994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/22/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Novel modalities for overcoming recurrent urinary tract infections associated with indwelling urinary catheters are needed, and rapidly induced hyperthermia is one potential solution. PEDOT nanotubes are a class of photothermal particles that can easily be incorporated into silicone to produce thin, uniform coating on medical grade silicone catheters; subsequent laser stimulation therein imparts temperature elevations that can eliminate bacteria and biofilms. PEDOT silicone coatings are stable following thermal sterilization and repeated heating and cooling cycles. Laser stimulation can induce temperature increases of up to 55 °C in 300 s, but only 45 s was needed for ablation of UTI inducing E. coli biofilms in vitro. This work also demonstrates that mild hyperthermia of 50 °C, applied for only 31 s in the presence of antibiotics could eliminate E. coli biofilm as effectively as high temperatures. This work culminates in the evaluation of the PEDOT NTs for photothermal elimination of E. coli in an in vivo model to demonstrate the safety and effectiveness of a photothermal nanocomposite (16 s treatment time) for rapid clearance of E. coli.
Collapse
Affiliation(s)
- Juan Sebastian Rodriguez-Alvarez
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America; Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Lauren Kratky
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Shaina Yates-Alston
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Santu Sarkar
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Kenneth Vogel
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Jorge Gutierrez-Aceves
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America
| | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States of America.
| |
Collapse
|
7
|
Álvarez E, Estévez M, Gallo-Cordova A, González B, Castillo RR, Morales MDP, Colilla M, Izquierdo-Barba I, Vallet-Regí M. Superparamagnetic Iron Oxide Nanoparticles Decorated Mesoporous Silica Nanosystem for Combined Antibiofilm Therapy. Pharmaceutics 2022; 14:163. [PMID: 35057058 PMCID: PMC8778149 DOI: 10.3390/pharmaceutics14010163] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
A crucial challenge to face in the treatment of biofilm-associated infection is the ability of bacteria to develop resistance to traditional antimicrobial therapies based on the administration of antibiotics alone. This study aims to apply magnetic hyperthermia together with controlled antibiotic delivery from a unique magnetic-responsive nanocarrier for a combination therapy against biofilm. The design of the nanosystem is based on antibiotic-loaded mesoporous silica nanoparticles (MSNs) externally functionalized with a thermo-responsive polymer capping layer, and decorated in the outermost surface with superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs are able to generate heat upon application of an alternating magnetic field (AMF), reaching the temperature needed to induce a change in the polymer conformation from linear to globular, therefore triggering pore uncapping and the antibiotic cargo release. The microbiological assays indicated that exposure of E. coli biofilms to 200 µg/mL of the nanosystem and the application of an AMF (202 kHz, 30 mT) decreased the number of viable bacteria by 4 log10 units compared with the control. The results of the present study show that combined hyperthermia and antibiotic treatment is a promising approach for the effective management of biofilm-associated infections.
Collapse
Affiliation(s)
- Elena Álvarez
- Departamento de Química en Ciencias Farmacéuticas, Faculdad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (E.Á.); (M.E.); (B.G.); (R.R.C.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28029 Madrid, Spain
| | - Manuel Estévez
- Departamento de Química en Ciencias Farmacéuticas, Faculdad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (E.Á.); (M.E.); (B.G.); (R.R.C.)
| | - Alvaro Gallo-Cordova
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (A.G.-C.); (M.d.P.M.)
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Faculdad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (E.Á.); (M.E.); (B.G.); (R.R.C.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28029 Madrid, Spain
| | - Rafael R. Castillo
- Departamento de Química en Ciencias Farmacéuticas, Faculdad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (E.Á.); (M.E.); (B.G.); (R.R.C.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28029 Madrid, Spain
| | - María del Puerto Morales
- Instituto de Ciencia de Materiales de Madrid, ICMM/CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (A.G.-C.); (M.d.P.M.)
| | - Montserrat Colilla
- Departamento de Química en Ciencias Farmacéuticas, Faculdad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (E.Á.); (M.E.); (B.G.); (R.R.C.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28029 Madrid, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Faculdad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (E.Á.); (M.E.); (B.G.); (R.R.C.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28029 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Faculdad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain; (E.Á.); (M.E.); (B.G.); (R.R.C.)
- CIBER de Bioingeniería Biomateriales y Nanomedicina CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
8
|
Biglarnia F, Solhjoo K, Rezanezhad H, Taghipour A, Armand B. Isolation and identification of potentially pathogenic free-living amoeba in dialysis fluid samples of hydraulic systems in hemodialysis units. Trans R Soc Trop Med Hyg 2021; 116:454-461. [PMID: 34676414 DOI: 10.1093/trstmh/trab155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Free-living amoeba (FLA), including Acanthamoeba, Naegleria, Balamuthia and Vermamoeba, have been isolated from water, sand, soil, dust and air. Numerous studies considered that FLA are a significant cause of neurological and ocular complications in high-risk groups, including immunocompromised individuals. The present study aimed to identify morphological and molecular characteristics of FLA isolates in dialysis fluid samples of hydraulic systems in hemodialysis units in Iran. METHODS A total of 328 dialysis fluid samples were collected from 16 dialysis machines, including 164 samples before hemodialysis sessions (after cleaning) and 164 samples after hemodialysis sessions (before cleaning). Filtration and cultivation were performed on non-nutrient agar medium. Also, PCR and sequencing were applied by using the genus-specific primers along with a common primer set on positive samples. RESULTS Both morphology and molecular investigations showed that 22.5% (74/328) of dialysis fluid samples were positive for FLA. There was a positive relationship between the high frequency of FLA after hemodialysis sessions (before cleaning) compared with before hemodialysis sessions (after cleaning) (OR=2.86; 95% CI 1.5 to 5.45). Considering the PCR assay, 16.46% (54/328) samples were identified as Acanthamoeba spp. (belonging to T3 and T4 genotypes), 5.18% (17/328) as Vermamoeba vermiformis and 0.91% (3/328) as Vahlkampfiidae family (Naegleria australiensis, Naegleria pagei and Allovahlkampfia). CONCLUSION The present results support a need to improve filtration and purification methods for dialysis fluid of hydraulic systems in hemodialysis units. They also highlight the relevance of periodic screenings for FLA-related diseases in hemodialysis patients.
Collapse
Affiliation(s)
- Farzaneh Biglarnia
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom 7167715258, Iran
| | - Kavous Solhjoo
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom 7167715258, Iran.,Zoonoses Research Center, School of Medicine, Jahrom University of Medical Sciences, Jahrom 7167712521, Iran
| | - Hassan Rezanezhad
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom 7167715258, Iran.,Zoonoses Research Center, School of Medicine, Jahrom University of Medical Sciences, Jahrom 7167712521, Iran
| | - Ali Taghipour
- Zoonoses Research Center, School of Medicine, Jahrom University of Medical Sciences, Jahrom 7167712521, Iran
| | - Belal Armand
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Furtwangen 78120, Germany
| |
Collapse
|
9
|
Yates-Alston S, Sarkar S, Cochran M, Kuthirummal N, Levi N. Hybrid donor-acceptor polymer nanoparticles and combination antibiotic for mitigation of pathogenic bacteria and biofilms. J Microbiol Methods 2021; 190:106328. [PMID: 34536464 DOI: 10.1016/j.mimet.2021.106328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/19/2022]
Abstract
Biofilms pose a significant clinical problem in skin and soft tissue infections. Their resistance to antibiotics has spurred investigations into alternative treatments, such as nanoparticle-mediated photothermal ablation. Non-toxic Hybrid Donor- Acceptor (DA) Polymer nanoParticles (H-DAPPs) were developed for fluorescence imaging (using poly(3-hexylthiophene-2,5 diyl) (P3HT)) and rapid, near-infrared photothermal ablation (NIR- PTA) (using poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-b']dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe)). H-DAPPs were evaluated alone, and in combination with antibiotics, against planktonic S. aureus and S. pyogenes, and S. aureus biofilms. H-DAPPs NIR-PTA (15-700 μg/ mL) can generate rapid temperature changes of 27.6-73.1 °C, which can eradicate planktonic bacterial populations and reduce biofilm bacterial viability by more than 4- log (> 99.99%) with exposure to 60 s of 800 nm light. Reductions were confirmed via confocal analysis, which suggested that H-DAPPs PTA caused bacterial inactivation within the biofilms, but did not significantly reduce biofilm polysaccharides. SEM imaging revealed structural changes in biofilms after H-DAPPs PTA. S. aureus biofilms challenged with 100 μg/mL of H-DAPPs (H-DAPPs-100) to induce an average temperature of 55.1 °C, and the minimum biofilm eradication concentration (MBEC) of clindamycin, resulted in up to ~3- log decrease in bacterial viability compared to untreated biofilms and those administered H-DAPPs-100 PTA only, and up to ~2- log compared to biofilms administered only clindamycin. This study demonstrates that polymer nanoparticle PTA can mitigate biofilm infection and may improve antimicrobial efficacy.
Collapse
Affiliation(s)
- Shaina Yates-Alston
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Santu Sarkar
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Matthew Cochran
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | | | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA.
| |
Collapse
|
10
|
Aljaafari H, Gu Y, Chicchelly H, Nuxoll E. Thermal Shock and Ciprofloxacin Act Orthogonally on Pseudomonas aeruginosa Biofilms. Antibiotics (Basel) 2021; 10:1017. [PMID: 34439066 PMCID: PMC8388990 DOI: 10.3390/antibiotics10081017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Bacterial biofilm infections are a major liability of medical implants, due to their resistance to both antibiotics and host immune response. Thermal shock can kill established biofilms, and some evidence suggests antibiotics may enhance this efficacy, despite having an insufficient effect themselves. The nature of this interaction is unclear, however, complicating efforts to integrate thermal shock into implant infection treatment. This study aimed to determine whether these treatments were truly synergistic or simply orthogonal (i.e., independent). Pseudomonas aeruginosa biofilms of different architectures and stationary-phase population density were subjected to various thermal shocks, antibiotic exposures, or combinations thereof, and examined either immediately after treatment or after subsequent reincubation. Population decreases from the combination treatment matched the product of the decreases of individual treatments, indicating their orthogonality. However, reincubation showed binary behavior, where biofilms with an immediate population decrease beyond a critical factor (~104) died off completely during reincubation, while biofilms with a smaller immediate decrease regrew. This critical factor was independent of the initial population density and the combination of treatments that achieved the immediate decrease. While antibiotics do not appear to enhance thermal shock directly, their contribution to achieving a critical population decrease for biofilm elimination can make the treatments appear strongly synergistic, strongly decreasing the intensity of thermal shock needed.
Collapse
Affiliation(s)
- Haydar Aljaafari
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA; (H.A.); (Y.G.); (H.C.)
- Department of Chemical Engineering, University of Technology, Baghdad 10066, Iraq
| | - Yuejia Gu
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA; (H.A.); (Y.G.); (H.C.)
| | - Hannah Chicchelly
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA; (H.A.); (Y.G.); (H.C.)
| | - Eric Nuxoll
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA; (H.A.); (Y.G.); (H.C.)
| |
Collapse
|
11
|
Differential Effects of Heated Perfusate on Morphology, Viability, and Dissemination of Staphylococcus epidermidis Biofilms. Appl Environ Microbiol 2020; 86:AEM.01193-20. [PMID: 32801173 PMCID: PMC7531952 DOI: 10.1128/aem.01193-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/03/2020] [Indexed: 01/11/2023] Open
Abstract
Bacterial biofilms are a leading cause of medical device infections. Staphylococcus epidermidis is commonly responsible for these types of infections. With increasing occurrences of antibacterial resistance, there has been a new push to explore treatment options that augment traditional antibiotic therapies. Here, we show how thermal treatment can be applied to both degrade bacterial biofilms on substrates and impede the proliferation of cells that detach from them. Understanding the response of both surface-adhered and dispersed bacterial cells under thermal stress conditions is a foundational step toward the development of an in situ treatment/remediation method for biofilm growth in medical devices; such an application could use oscillatory flow of heated fluid in a catheter as an adjuvant to antibiotic treatment. The work furthermore provides new insight into the viability of disseminated biofilm material. The biofilm phenotype offers bacterial communities protection from environmental factors, as evidenced by its role in the viability, persistence, and virulence of cells under conditions in which flow is present, such as in riverbeds, industrial piping networks, and the human circulatory system. Here, we examined the hypothesis that temperature—an environmental factor that affects the growth of the Gram-positive bacterium Staphylococcus epidermidis—controls, through dual mechanisms, persistence of this bacterial strain in a shear environment characteristic of the human circulatory system. We demonstrated that temperature and antibiotics impact the surface-adhered biofilm and material disseminated downstream in different ways. Specifically, by means of three-dimensional (3D) confocal and scanning electron microscopy, an increase in surface-adhered biofilm heterogeneity was observed with increasing temperature. Additionally, we found a 4-log decrease in cell viability at the biofilm surface as the perfusate temperature was increased from 37°C to 50°C. Finally, the viability of cell-containing fragments that were disseminated from the substrate was assessed by downstream sampling, culture, and optical density measurement. We found that although temperature decreased the viability of the surface-adhered biofilm, the downstream material remained viable. And yet, in the presence of antibiotics, the growth of disseminated material was nearly completely inhibited, even though the addition of antibiotics had no significant impact on the viability of the surface-adhered biofilm. The mechanism involves both biofilm structural damage, as quantified by morphology of debrided material, and reduced cell viability, as quantified by assay of bacterial cells present in the surface-adherent biofilm and in the downstream effluent. The results potentially identify parameter ranges in which elevated temperature could augment current antibiotic treatment regimens. IMPORTANCE Bacterial biofilms are a leading cause of medical device infections. Staphylococcus epidermidis is commonly responsible for these types of infections. With increasing occurrences of antibacterial resistance, there has been a new push to explore treatment options that augment traditional antibiotic therapies. Here, we show how thermal treatment can be applied to both degrade bacterial biofilms on substrates and impede the proliferation of cells that detach from them. Understanding the response of both surface-adhered and dispersed bacterial cells under thermal stress conditions is a foundational step toward the development of an in situ treatment/remediation method for biofilm growth in medical devices; such an application could use oscillatory flow of heated fluid in a catheter as an adjuvant to antibiotic treatment. The work furthermore provides new insight into the viability of disseminated biofilm material.
Collapse
|
12
|
Jiménez Hernández M, Soriano A, Filella X, Calvo M, Coll E, Rebled JM, Poch E, Graterol F, Compte MT, Maduell F, Fontsere N. Impact of locking solutions on conditioning biofilm formation in tunnelled haemodialysis catheters and inflammatory response activation. J Vasc Access 2020; 22:370-379. [PMID: 32691665 DOI: 10.1177/1129729820942040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The surface of tunnelled cuffed catheters provides an optimal environment for the development of biofilms, which have recently been described as conditioning films because of the presence of adherent biological materials. These biofilms are associated with infection and thrombosis and potentially increase patients' inflammatory response. These complications could be reduced by the use of locking solutions. OBJECTIVE To analyse biofilm formation, using confocal and electron microscopy, in tunnelled cuffed catheters locked with three different solutions and to determine the relationship between these solutions and inflammatory response. STUDY DESIGN This prospective study included 35 haemodialysis patients with tunnelled cuffed catheter removal for non-infection-related reasons. The participants were divided into three groups according to the lock solution used: (1) heparin 1: 5000 IU; (2) citrate 4%; and (3) taurolidine 1.35%, citrate 4% and heparin 500 IU (taurolock); in the latter group, 25,000 IU taurolidine-urokinase was used in the last weekly session. All tunnelled cuffed catheters were cultured, and the inner surface was evaluated with confocal and electron microscopy. The inflammatory profile of included patients was determined at tunnelled cuffed catheter removal. RESULTS There were no differences in clinical or demographic variables between the three subgroups. Biofilm thickness was lower in the taurolidine group than in the citrate 4% and heparin groups (28.85 ± 6.86 vs 49.99 ± 16.56 vs 56.2 ± 15.67 µm, respectively; p < 0.001), as was biofilm volume (1.01 ±1.18 vs 3.7 ± 2.15 vs 5.55 ±2.44, µm3, respectively; p < 0.001). The mean interleukin-6 value was 39%, which was 50% lower than in the citrate and heparin groups, but without significance differences. CONCLUSION Our results show that biofilms were found in all tunnelled cuffed catheters, but the thickness and volume were significantly lower in tunnelled cuffed catheters locked with taurolidine solution. Therefore, the type of locking solution used in tunnelled cuffed catheters should maintain tunnelled cuffed catheter sterility and prevent catheter-related bloodstream infections. No significant difference was observed in the inflammatory profile according to the type of locking solution.
Collapse
Affiliation(s)
- Mario Jiménez Hernández
- Department of Nephrology, Hospital Clínic de Barcelona, Barcelona, Spain.,School of Medicine, Universidad de las Americas Puebla, San Andrés Cholula, Puebla, Mexico
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Xavier Filella
- Biomedical Diagnostic Center, Hospital Clínic de Barcelona, Barcelona, Spain
| | - María Calvo
- Advanced Optical Microscopy Unit, Scientific and Technological Centers of the University of Barcelona, Barcelona, Spain
| | - Elisenda Coll
- Advanced Optical Microscopy Unit, Scientific and Technological Centers of the University of Barcelona, Barcelona, Spain
| | - Josep M Rebled
- Unitat de Microscòpia Electrònica (TEM/SEM), Centres Científics i Tecnològics, Barcelona, Spain
| | - Esteban Poch
- Department of Nephrology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Fredzia Graterol
- Department of Nephrology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Francisco Maduell
- Department of Nephrology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Néstor Fontsere
- Department of Nephrology, Hospital Clínic de Barcelona, Barcelona, Spain.,Vascular Access Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
First Molecular Evidences of Acanthamoeba T3, T4 and T5 Genotypes in Hemodialysis Units in Iran. Acta Parasitol 2019; 64:911-915. [PMID: 31552581 DOI: 10.2478/s11686-019-00122-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acanthamoeba is a genus of the free-living amoeba that is widespread in the environment and is a causative agent of opportunistic infections in human. This study aimed to investigate the existence and genotyping of Acanthamoeba species in hemodialysis units in Iran. METHODS In the present study, forty water samples of hydraulic systems and twenty dust samples were collected from two hemodialysis units in Mazandaran Province, northern Iran. The samples were cultivated on non-nutrient agar and genotyping was performed by targeting the 18S rRNA gene. RESULTS Both morphology and molecular analyses showed that 17.5% (7/40) of water samples and 50% (10/20) of dust samples were positive for Acanthamoeba spp. The sequencing analysis of these isolates was found to be T3, T4 and T5 genotypes. DISCUSSION To the best of our knowledge, this is the first investigation to identify of Acanthamoeba species in hydraulic system of hemodialysis units in Iran. High contamination of hemodialysis units with virulent T4 genotype of Acanthamoeba may poses a risk for biofilm formation. Our results support urgent need to improve filtration methods in dialysis units and monitoring hemodialysis patients for Acanthamoeba infections.
Collapse
|
14
|
Ibelli T, Templeton S, Levi-Polyachenko N. Progress on utilizing hyperthermia for mitigating bacterial infections. Int J Hyperthermia 2018; 34:144-156. [DOI: 10.1080/02656736.2017.1369173] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Taylor Ibelli
- Zanvyl Kreiger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | | | - Nicole Levi-Polyachenko
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|
15
|
Munaweera I, Shaikh S, Maples D, Nigatu AS, Sethuraman SN, Ranjan A, Greenberg DE, Chopra R. Temperature-sensitive liposomal ciprofloxacin for the treatment of biofilm on infected metal implants using alternating magnetic fields. Int J Hyperthermia 2018; 34:189-200. [PMID: 29498309 PMCID: PMC6034688 DOI: 10.1080/02656736.2017.1422028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Implants are commonly used as a replacement for damaged tissue. Many implants, such as pacemakers, chronic electrode implants, bone screws, and prosthetic joints, are made of or contain metal. Infections are one of the difficult to treat complications associated with metal implants due to the formation of biofilm, a thick aggregate of extracellular polymeric substances (EPS) produced by the bacteria. In this study, we treated a metal prosthesis infection model using a combination of ciprofloxacin-loaded temperature-sensitive liposomes (TSL) and alternating magnetic fields (AMF). AMF heating is used to disrupt the biofilm and release the ciprofloxacin-loaded TSL. The three main objectives of this study were to (1) investigate low- and high-temperature-sensitive liposomes (LTSLs and HTSLs) containing the antimicrobial agent ciprofloxacin for temperature-mediated antibiotic release, (2) characterise in vitro ciprofloxacin release and stability and (3) study the efficacy of combining liposomal ciprofloxacin with AMF against Pseudomonas aeruginosa biofilms grown on metal washers. The release of ciprofloxacin from LTSL and HTSL was assessed in physiological buffers. Results demonstrated a lower transition temperature for both LTSL and HTSL formulations when incubated in serum as compared with PBS, with a more pronounced impact on the HTSLs. Upon combining AMF with temperature-sensitive liposomal ciprofloxacin, a 3 log reduction in CFU of Pseudomonas aeruginosa in biofilm was observed. Our initial studies suggest that AMF exposure on metal implants can trigger release of antibiotic from temperature sensitive liposomes for a potent bactericidal effect on biofilm.
Collapse
Affiliation(s)
- Imalka Munaweera
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sumbul Shaikh
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Danny Maples
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Adane S. Nigatu
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - David E. Greenberg
- Division of Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Chopra R, Shaikh S, Chatzinoff Y, Munaweera I, Cheng B, Daly SM, Xi Y, Bing C, Burns D, Greenberg DE. Employing high-frequency alternating magnetic fields for the non-invasive treatment of prosthetic joint infections. Sci Rep 2017; 7:7520. [PMID: 28790407 PMCID: PMC5548742 DOI: 10.1038/s41598-017-07321-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/29/2017] [Indexed: 11/16/2022] Open
Abstract
Treatment of prosthetic joint infection (PJI) usually requires surgical replacement of the infected joint and weeks of antibiotic therapy, due to the formation of biofilm. We introduce a non-invasive method for thermal destruction of biofilm on metallic implants using high-frequency (>100 kHz) alternating magnetic fields (AMF). In vitro investigations demonstrate a >5-log reduction in bacterial counts after 5 minutes of AMF exposure. Confocal and scanning electron microscopy confirm removal of biofilm matrix components within 1 minute of AMF exposure, and combination studies of antibiotics and AMF demonstrate a 5-log increase in the sensitivity of Pseudomonas aeruginosa to ciprofloxacin. Finite element analysis (FEA) simulations demonstrate that intermittent AMF exposures can achieve uniform surface heating of a prosthetic knee joint. In vivo studies confirm thermal damage is confined to a localized region (<2 mm) around the implant, and safety can be achieved using acoustic monitoring for the presence of surface boiling. These initial studies support the hypothesis that AMF exposures can eradicate biofilm on metal implants, and may enhance the effectiveness of conventional antibiotics.
Collapse
Affiliation(s)
- Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA.
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Sumbul Shaikh
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yonatan Chatzinoff
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Imalka Munaweera
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bingbing Cheng
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Seth M Daly
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yin Xi
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Dennis Burns
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David E Greenberg
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Fülöp T, Tapolyai MB, Agarwal M, Lopez-Ruiz A, Molnar MZ, Dossabhoy NR. Bedside Tunneled Dialysis Catheter Removal-A Lesson Learned From Nephrology Trainees. Artif Organs 2016; 41:810-817. [DOI: 10.1111/aor.12869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/31/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Tibor Fülöp
- Department of Medicine; Division of Nephrology, University of Mississippi Medical Center; Jackson MS USA
| | | | - Mohit Agarwal
- Department of Medicine; Division of Nephrology, University of Mississippi Medical Center; Jackson MS USA
| | - Arnaldo Lopez-Ruiz
- Department of Medicine; Division of Nephrology, University of Mississippi Medical Center; Jackson MS USA
| | - Miklos Z. Molnar
- Division of Nephrology; Department of Medicine, University of Tennessee Health Science Center; Memphis TN
| | - Neville R. Dossabhoy
- Department of Medicine; Nephrology Section, Overton Brooks Veterans Affairs Medical Center
- Department of Internal Medicine; Nephrology Section, Louisiana State University Health-Shreveport, School of Medicine; Shreveport LA USA
| |
Collapse
|