1
|
Sutyagina OI, Beilin AK, Vorotelyak EA, Vasiliev AV. Immortalization Reversibility in the Context of Cell Therapy Biosafety. Int J Mol Sci 2023; 24:7738. [PMID: 37175444 PMCID: PMC10178325 DOI: 10.3390/ijms24097738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Immortalization (genetically induced prevention of replicative senescence) is a promising approach to obtain cellular material for cell therapy or for bio-artificial organs aimed at overcoming the problem of donor material shortage. Immortalization is reversed before cells are used in vivo to allow cell differentiation into the mature phenotype and avoid tumorigenic effects of unlimited cell proliferation. However, there is no certainty that the process of de-immortalization is 100% effective and that it does not cause unwanted changes in the cell. In this review, we discuss various approaches to reversible immortalization, emphasizing their advantages and disadvantages in terms of biosafety. We describe the most promising approaches in improving the biosafety of reversibly immortalized cells: CRISPR/Cas9-mediated immortogene insertion, tamoxifen-mediated self-recombination, tools for selection of successfully immortalized cells, using a decellularized extracellular matrix, and ensuring post-transplant safety with the use of suicide genes. The last process may be used as an add-on for previously existing reversible immortalized cell lines.
Collapse
Affiliation(s)
- Oksana I. Sutyagina
- N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Laboratory of Cell Biology, Vavilov Str. 26, 119334 Moscow, Russia
| | | | | | | |
Collapse
|
2
|
Patterson CM, Shah A, Rabin J, DiChiacchio L, Cypel M, Hoetzenecker K, Catarino P, Lau CL. EXTRACORPOREAL LIFE SUPPORT AS A BRIDGE TO LUNG TRANSPLANTATION: WHERE ARE WE NOW? J Heart Lung Transplant 2022; 41:1547-1555. [DOI: 10.1016/j.healun.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022] Open
|
3
|
Astor TL, Borenstein JT. The microfluidic artificial lung: Mimicking nature's blood path design to solve the biocompatibility paradox. Artif Organs 2022; 46:1227-1239. [PMID: 35514275 DOI: 10.1111/aor.14266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
The increasing prevalence of chronic lung disease worldwide, combined with the emergence of multiple pandemics arising from respiratory viruses over the past century, highlights the need for safer and efficacious means for providing artificial lung support. Mechanical ventilation is currently used for the vast majority of patients suffering from acute and chronic lung failure, but risks further injury or infection to the patient's already compromised lung function. Extracorporeal membrane oxygenation (ECMO) has emerged as a means of providing direct gas exchange with the blood, but limited access to the technology and the complexity of the blood circuit have prevented the broader expansion of its use. A promising avenue toward simplifying and minimizing complications arising from the blood circuit, microfluidics-based artificial organ support, has emerged over the past decade as an opportunity to overcome many of the fundamental limitations of the current standard for ECMO cartridges, hollow fiber membrane oxygenators. The power of microfluidics technology for this application stems from its ability to recapitulate key aspects of physiological microcirculation, including the small dimensions of blood vessel structures and gas transfer membranes. An even greater advantage of microfluidics, the ability to configure blood flow patterns that mimic the smooth, branching nature of vascular networks, holds the potential to reduce the incidence of clotting and bleeding and to minimize reliance on anticoagulants. Here, we summarize recent progress and address future directions and goals for this potentially transformative approach to artificial lung support.
Collapse
Affiliation(s)
- Todd L Astor
- Biomembretics, Inc., Boston, Massachusetts, USA.,Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
4
|
Polastri M, Loforte A, Dell'Amore A, Swol J. Physiotherapy and artificial lungs: looking to the future. INTERNATIONAL JOURNAL OF THERAPY AND REHABILITATION 2021. [DOI: 10.12968/ijtr.2021.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Massimiliano Polastri
- Department of Continuity of Care and Disability, Physical Medicine and Rehabilitation, St Orsola University Hospital, Bologna, Italy
- Critical and Respiratory Care Unit, University Hospital of Bologna, Scientific Institute for Research, Hospitalization and Healthcare, Bologna, Italy
| | - Antonio Loforte
- Division of Cardiac Surgery, University Hospital of Bologna, Scientific Institute for Research, Hospitalization and Healthcare, Bologna, Italy
| | | | - Justyna Swol
- Department of Respiratory Medicine, Allergology and Sleep Medicine, Paracelsus Medical University General Hospital, Nuremberg, Germany
| |
Collapse
|
5
|
Arens J, Grottke O, Haverich A, Maier LS, Schmitz-Rode T, Steinseifer U, Wendel H, Rossaint R. Toward a Long-Term Artificial Lung. ASAIO J 2020; 66:847-854. [PMID: 32740342 PMCID: PMC7386861 DOI: 10.1097/mat.0000000000001139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Only a very small portion of end-stage organ failures can be treated by transplantation because of the shortage of donor organs. Although artificial long-term organ support such as ventricular assist devices provide therapeutic options serving as a bridge-to-transplantation or destination therapy for end-stage heart failure, suitable long-term artificial lung systems are still at an early stage of development. Although a short-term use of an extracorporeal lung support is feasible today, the currently available technical solutions do not permit the long-term use of lung replacement systems in terms of an implantable artificial lung. This is currently limited by a variety of factors: biocompatibility problems lead to clot formation within the system, especially in areas with unphysiological flow conditions. In addition, proteins, cells, and fibrin are deposited on the membranes, decreasing gas exchange performance and thus, limiting long-term use. Coordinated basic and translational scientific research to solve these problems is therefore necessary to enable the long-term use and implantation of an artificial lung. Strategies for improving the biocompatibility of foreign surfaces, for new anticoagulation regimes, for optimization of gas and blood flow, and for miniaturization of these systems must be found. These strategies must be validated by in vitro and in vivo tests, which remain to be developed. In addition, the influence of long-term support on the pathophysiology must be considered. These challenges require well-connected interdisciplinary teams from the natural and material sciences, engineering, and medicine, which take the necessary steps toward the development of an artificial implantable lung.
Collapse
Affiliation(s)
- Jutta Arens
- From the Chair in Engineering Organ Support Technologies, Department of Biomechanical Engineering, Faculty of Engineering Technologies, University of Twente, Enschede, The Netherlands
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty
| | - Oliver Grottke
- Department of Anesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Axel Haverich
- Thoracic, Cardiac and Vascular Surgery, Medizinische Hochschule Hannover, Hannover, Germany
| | - Lars S. Maier
- Internal Medicine II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty
| | - H.P. Wendel
- Thoracic, Cardiac and Vascular Surgery, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Rolf Rossaint
- Department of Anesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Klein S, Hesselmann F, Djeljadini S, Berger T, Thiebes AL, Schmitz-Rode T, Jockenhoevel S, Cornelissen CG. EndOxy: Dynamic Long-Term Evaluation of Endothelialized Gas Exchange Membranes for a Biohybrid Lung. Ann Biomed Eng 2020; 48:747-756. [PMID: 31754901 PMCID: PMC6949203 DOI: 10.1007/s10439-019-02401-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
In the concept of a biohybrid lung, endothelial cells seeded on gas exchange membranes form a non-thrombogenic an anti-inflammatory surface to overcome the lacking hemocompatibility of today's oxygenators during extracorporeal membrane oxygenation. To evaluate this concept, the long-term stability and gas exchange performance of endothelialized RGD-conjugated polydimethylsiloxane (RGD-PDMS) membranes was evaluated. Human umbilical vein endothelial cells (ECs) were cultured on RGD-PDMS in a model system under physiological wall shear stress (WSS) of 0.5 Pa for up to 33 days. Gas exchange performance was tested with three biological replicates under elevated WSS of 2.5 Pa using porcine blood adjusted to venous values following ISO 7199 and blood gas analysis. EC morphology was assessed by immunocytochemistry (n = 3). RGD-PDMS promoted endothelialization and stability of endothelialized membranes was shown for at least 33 days and for a maximal WSS of 2.5 Pa. Short-term exposure to porcine blood did not affect EC integrity. The gas transfer tests provided evidence for the oxygenation and decarboxylation of the blood across endothelialized membranes with a decrease of transfer rates over time that needs to be addressed in further studies with larger sample sizes. Our results demonstrate the general suitability of RGD-PDMS for biohybrid lung applications, which might enable long-term support of patients with chronic lung failure in the future.
Collapse
Affiliation(s)
- Sarah Klein
- Department of Biohybrid & Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
- Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, 6167 RD, Geleen, The Netherlands
| | - Felix Hesselmann
- Department of Cardiovascular Engineering (CVE), AME - Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Suzana Djeljadini
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Tanja Berger
- Department of Medical Statistics, RWTH Aachen University Hospital, Pauwelsstraße 19, 52074, Aachen, Germany
| | - Anja Lena Thiebes
- Department of Biohybrid & Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
- Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, 6167 RD, Geleen, The Netherlands
| | - Thomas Schmitz-Rode
- Department of Biohybrid & Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany.
- Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, 6167 RD, Geleen, The Netherlands.
| | - Christian G Cornelissen
- Department of Biohybrid & Medical Textiles (BioTex), AME - Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
- Department of Pneumology and Internal Intensive Care Medicine, Medical Clinic V, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|