1
|
Goswami D, Kazim M, Nguyen CT. Applications of 3D Printing Technology in Diagnosis and Management of Heart Failure. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2024; 26:271-277. [DOI: 10.1007/s11936-024-01045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 01/03/2025]
Abstract
AbstractPurpose of Review3D printing (3DP) technology has emerged as a valuable tool for surgeons and cardiovascular interventionalists in developing and tailoring patient-specific treatment strategies, especially in complex and rare cases. This short review covers advances, primarily in the last three years, in the use of 3DP in the diagnosis and management of heart failure and related cardiovascular conditions.Recent FindingsLatest studies include utilization of 3DP in ventricular assist device placement, congenital heart disease identification and treatment, pre-operative planning and management in hypertrophic cardiomyopathy, clinician as well as patient education, and benchtop mock circulatory loops.SummaryStudies reported benefits for patients including significantly reduced operation time, potential for lower radiation exposure, shorter mechanical ventilation times, lower intraoperative blood loss, and less total hospitalization time, as a result of the use of 3DP. As 3DP technology continues to evolve, clinicians, basic science researchers, engineers, and regulatory authorities must collaborate closely to optimize the utilization of 3D printing technology in the diagnosis and management of heart failure.
Collapse
|
2
|
Straccia A, Chassagne F, Barbour MC, Beckman J, Li S, Mahr C, Aliseda A. A Computational Investigation of the Effects of Temporal Synchronization of Left Ventricular Assist Device Speed Modulation with the Cardiac Cycle on Intraventricular Hemodynamics. Ann Biomed Eng 2024; 52:1763-1778. [PMID: 38517620 DOI: 10.1007/s10439-024-03489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Patients with advanced heart failure are implanted with a left ventricular assist device (LVAD) as a bridge-to-transplantation or destination therapy. Despite advances in pump design, the risk of stroke remains high. LVAD implantation significantly alters intraventricular hemodynamics, where regions of stagnation or elevated shear stresses promote thrombus formation. Third generation pumps incorporate a pulsatility mode that modulates rotational speed of the pump to enhance in-pump washout. We investigated how the timing of the pulsatility mode with the cardiac cycle affects intraventricular hemodynamic factors linked to thrombus formation. Computational fluid dynamics simulations with Lagrangian particle tracking to model platelet behavior in a patient-specific left ventricle captured altered intraventricular hemodynamics due to LVAD implantation. HeartMate 3 incorporates a pulsatility mode that modulates the speed of the pump every two seconds. Four different timings of this pulsatility mode with respect to the cardiac cycle were investigated. A strong jet formed between the mitral valve and inflow cannula. Blood stagnated in the left ventricular outflow tract beneath a closed aortic valve, in the near-wall regions off-axis of the jet, and in a large counterrotating vortex near the anterior wall. Computational results showed good agreement with particle image velocimetry results. Synchronization of the pulsatility mode with peak systole decreased stasis, reflected in the intraventricular washout of virtual contrast and Lagrangian particles over time. Temporal synchronization of HeartMate 3 pulsatility with the cardiac cycle reduces intraventricular stasis and could be beneficial for decreasing thrombogenicity.
Collapse
Affiliation(s)
- Angela Straccia
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
| | | | - Michael C Barbour
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Jennifer Beckman
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Song Li
- Institute for Advanced Cardiac Care, Medical City Healthcare, Dallas, TX, USA
| | - Claudius Mahr
- Institute for Advanced Cardiac Care, Medical City Healthcare, Dallas, TX, USA
| | - Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Chassagne F, Beckman JA, Li S, Mahr C, Aliseda A. In Vitro Investigation of the Effect of the Timing of Left Ventricular Assist Device Speed Modulation on Intraventricular Flow Patterns. ASAIO J 2023; 69:533-543. [PMID: 36881637 PMCID: PMC11187697 DOI: 10.1097/mat.0000000000001893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Thromboembolic events remain a common complication for left ventricular assist device (LVAD) patients. To prevent in-pump thrombosis, third-generation LVADs use speed modulation, which is not synchronized with the native left ventricle (LV) contractility. This study aims to investigate the effect of speed modulation on intraventricular flow patterns, and specifically, the impact of timing relative to pressure variations in the LV. Stereo-particle image velocimetry measurements were performed in a patient-derived LV implanted with an LVAD, for different timings of the speed modulation and speed. Speed modulation has a strong effect on instantaneous afterload and flowrate (-16% and +20%). The different timings of the speed modulation resulted in different flowrate waveforms, exhibiting different maxima (5.3-5.9 L/min, at constant average flowrate). Moreover, the timing of the speed modulation was found to strongly influence intraventricular flow patterns, specifically, stagnation areas within the LV. These experiments highlight, once more, the complex relationship between LVAD speed, hemodynamic resistance, and intraventricular pressure. Overall, this study demonstrates the importance of considering native LV contractility in future LVAD controls, to improve hemocompatibility and reduce the risk of thromboembolic complications.
Collapse
Affiliation(s)
- Fanette Chassagne
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, F - 42023 Saint-Etienne France
| | | | - Song Li
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Claudius Mahr
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Alberto Aliseda
- Mechanical Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Li S, Jin D, Gui X. Dynamic characteristic modeling of left ventricular assist devices based on hysteresis effects. Comput Biol Med 2023; 157:106737. [PMID: 36921456 DOI: 10.1016/j.compbiomed.2023.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
OBJECTIVE The purpose of this study is to develop a new model for the dynamic characteristics of left ventricular assist devices (LVADs) interacting with the cardiovascular system under constant-speed modes. METHODS A new hysteresis model is established on the basis of the hysteresis effect and turbomachinery principles. The simulation results from the hysteresis model were compared with the inertia model. The in-vitro experiment results of a centrifugal pump (from literature) and the unsteady computational fluid dynamics (CFD) simulation results of an axial pump were used as the benchmarks. RESULTS Compared with the inertia model, at the partial support mode, the relative estimation error of the time to the maximum and minimum pump flow (Q) in the hysteresis model decreased at least 16.3% cardiac cycle (Tc) in the centrifugal pump and at least 1.9% Tc in the axial pump, indicating its ability to simulate more realistic Q fluctuations. Moreover, the hysteresis model could predict an accurate time distribution of different Q. CONCLUSION The hysteresis model provides a general calculation method for simulating the dynamic characteristics of constant-speed LVADs under interaction with the cardiovascular system. It is more accurate than the inertia model. SIGNIFICANCE The hysteresis model is helpful for the rapid estimation of unsteady dynamic characteristics in absence of a physical pump prototype at the preliminary design stage.
Collapse
Affiliation(s)
- Shulei Li
- School of Energy and Power Engineering, Beihang University, Beijing, PR China
| | - Donghai Jin
- School of Energy and Power Engineering, Beihang University, Beijing, PR China.
| | - Xingmin Gui
- School of Energy and Power Engineering, Beihang University, Beijing, PR China
| |
Collapse
|
5
|
A Mathematical Model of Artificial Pulse Synchronization for the HeartMate3 Left Ventricular Assist Device. ASAIO J 2023; 69:284-289. [PMID: 35797437 DOI: 10.1097/mat.0000000000001771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Constant speed control of rotary LVADs attenuates vascular pulsatility, which has been linked to clinical complications such as thrombus formation, bleeding, and valvular dysfunction. Speed modulation can improve pulsatility and washout, but optimization requires coordination with the native heartbeat. A simple mathematical model of the left ventricle-left ventricular assist device (LV-LVAD) flow interaction was developed that sums the individual contributions of the native LV and the HeartMate3 artificial pulse (AP) to predict the total systemic flow. The model flow and pulsatility predictions results were in good agreement with experimental data from a mock circulatory loop measured for full bypass support conditions. The model was used to evaluate three schemes for optimizing the synchronization of the AP with the native heart. The optimized interaction occurred when the AP speed increase occurred during contraction, resulting in a doubling of flow pulsatility, and corresponded to an increase in the area enclosed by the dynamic pressure-flow relation. The model provides a simple tool for exploring the optimization of LVAD speed modulation that can reduce the time and expense of mock loop studies during the development process.
Collapse
|
6
|
Rocchi M, Ingram M, Claus P, D'hooge J, Meyns B, Fresiello L. Use of 3D anatomical models in mock circulatory loops for cardiac medical device testing. Artif Organs 2023; 47:260-272. [PMID: 36370033 DOI: 10.1111/aor.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Mock circulatory loops (MCLs) are mechanical representations of the cardiovascular system largely used to test the hemodynamic performance of cardiovascular medical devices (MD). Thanks to 3 dimensional (3D) printing technologies, MCLs can nowadays also incorporate anatomical models so to offer enhanced testing capabilities. The aim of this review is to provide an overview on MCLs and to discuss the recent developments of 3D anatomical models for cardiovascular MD testing. METHODS The review first analyses the different techniques to develop 3D anatomical models, in both rigid and compliant materials. In the second section, the state of the art of MCLs with 3D models is discussed, along with the testing of different MDs: implantable blood pumps, heart valves, and imaging techniques. For each class of MD, the MCL is analyzed in terms of: the cardiovascular model embedded, the 3D model implemented (the anatomy represented, the material used, and the activation method), and the testing applications. DISCUSSIONS AND CONCLUSIONS MCLs serve the purpose of testing cardiovascular MDs in different (patho-)physiological scenarios. The addition of 3D anatomical models enables more realistic connections of the MD with the implantation site and enhances the testing capabilities of the MCL. Current attempts focus on the development of personalized MCLs to test MDs in patient-specific hemodynamic and anatomical scenarios. The main limitation of MCLs is the impossibility to assess the impact of a MD in the long-term and at a biological level, for which animal experiments are still needed.
Collapse
Affiliation(s)
- Maria Rocchi
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marcus Ingram
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Piet Claus
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Bart Meyns
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Libera Fresiello
- Cardiovasuclar and Respiratory Physiology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
7
|
Hayward C, Adachi I, Baudart S, Davis E, Feller ED, Kinugawa K, Klein L, Li S, Lorts A, Mahr C, Mathew J, Morshuis M, Müller M, Ono M, Pagani FD, Pappalardo F, Rich J, Robson D, Rosenthal DN, Saeed D, Salerno C, Sauer AJ, Schlöglhofer T, Tops L, VanderPluym C. Global Best Practices Consensus: Long-term Management of HeartWare Ventricular Assist Device Patients. J Thorac Cardiovasc Surg 2022; 164:1120-1137.e2. [DOI: 10.1016/j.jtcvs.2022.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/15/2022]
|