1
|
Cameli M, Aboumarie HS, Pastore MC, Caliskan K, Cikes M, Garbi M, Lim HS, Muraru D, Mandoli GE, Pergola V, Plein S, Pontone G, Soliman OI, Maurovich-Horvat P, Donal E, Cosyns B, Petersen SE. Multimodality imaging for the evaluation and management of patients with long-term (durable) left ventricular assist devices. Eur Heart J Cardiovasc Imaging 2024; 25:e217-e240. [PMID: 38965039 DOI: 10.1093/ehjci/jeae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024] Open
Abstract
Left ventricular assist devices (LVADs) are gaining increasing importance as therapeutic strategy in advanced heart failure (HF), not only as bridge to recovery or to transplant but also as destination therapy. Even though long-term LVADs are considered a precious resource to expand the treatment options and improve clinical outcome of these patients, these are limited by peri-operative and post-operative complications, such as device-related infections, haemocompatibility-related events, device mis-positioning, and right ventricular failure. For this reason, a precise pre-operative, peri-operative, and post-operative evaluation of these patients is crucial for the selection of LVAD candidates and the management LVAD recipients. The use of different imaging modalities offers important information to complete the study of patients with LVADs in each phase of their assessment, with peculiar advantages/disadvantages, ideal application, and reference parameters for each modality. This clinical consensus statement sought to guide the use of multimodality imaging for the evaluation of patients with advanced HF undergoing LVAD implantation.
Collapse
Affiliation(s)
- Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci 16, 53100 Siena, Italy
| | - Hatem Soliman Aboumarie
- Department of Anaesthetics, Critical Care and Mechanical Circulatory Support, Harefield Hospital, Royal Brompton and Harefield Hospitals, London, UK
- School of Cardiovascular, Metabolic Sciences and Medicine, King's College, WC2R 2LS London, UK
| | - Maria Concetta Pastore
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci 16, 53100 Siena, Italy
| | - Kadir Caliskan
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maja Cikes
- Department of Cardiovascular Diseases, University Hospital Centre, Zagreb, Croatia
| | | | - Hoong Sern Lim
- Institute of Cardiovascular Sciences, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Denisa Muraru
- Department of Cardiology, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Medicine and Surgery, University Milano-Bicocca, Milan, Italy
| | - Giulia Elena Mandoli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Viale Bracci 16, 53100 Siena, Italy
| | - Valeria Pergola
- Department of Cardiology, Padua University Hospital, Padua 35128, Italy
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Osama I Soliman
- Department of Cardiology, College of Medicine, Nursing and Health Sciences, National University of Galway, Galway, Ireland
| | | | - Erwan Donal
- University of Rennes, CHU Rennes, INSERM, LTSI-UMR 1099, Rennes F-35000, France
| | - Bernard Cosyns
- Centrum Voor Harten Vaatziekten (CHVZ), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
- In Vivo Cellular and Molecular Imaging (ICMI) Center, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Steffen E Petersen
- William Harvey Research Institute, National Institute for Health and Care Research Barts Biomedical Research Centre, Queen Mary University London, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health National Health Service Trust, London, UK
| |
Collapse
|
2
|
Costescu A, Riendeau Beaulac G, Guensch DP, Lalancette JS, Couture P, Denault AY. Perioperative echocardiographic strain analysis: what anesthesiologists should know. Can J Anaesth 2024; 71:650-670. [PMID: 38600285 DOI: 10.1007/s12630-024-02713-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 10/28/2023] [Indexed: 04/12/2024] Open
Abstract
PURPOSE Echocardiographic strain analysis by speckle tracking allows assessment of myocardial deformation during the cardiac cycle. Its clinical applications have significantly expanded over the last two decades as a sensitive marker of myocardial dysfunction with important diagnostic and prognostic values. Strain analysis has the potential to become a routine part of the perioperative echocardiographic examination for most anesthesiologist-echocardiographers but its exact role in the perioperative setting is still being defined. CLINICAL FEATURES This clinical report reviews the principles underlying strain analysis and describes its main clinical uses pertinent to the field of anesthesiology and perioperative medicine. Strain for assessment of left and right ventricular function as well as atrial strain is described. We also discuss the potential role of strain to aid in perioperative risk stratification, surgical patient selection in cardiac surgery, and guidance of anesthetic monitor choice and clinical decision-making in the perioperative period. CONCLUSION Echocardiographic strain analysis is a powerful tool that allows seeing what conventional 2D imaging sometimes fails to reveal. It often provides pathophysiologic insight into various cardiac diseases at an early stage. Strain analysis is readily feasible and reproducible thanks to the use of highly automated software platforms. This technique shows promising potential to become a valuable tool in the arsenal of the anesthesiologist-echocardiographer and aid in perioperative risk-stratification and clinical decision-making.
Collapse
Affiliation(s)
- Adrian Costescu
- Department of Anesthesiology, Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montreal, QC, Canada
| | - Geneviève Riendeau Beaulac
- Department of Anesthesiology, Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montreal, QC, Canada
| | - Dominik P Guensch
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jean-Simon Lalancette
- Division of Critical Care, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Pierre Couture
- Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - André Y Denault
- Department of Anesthesiology, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, QC, H1T 1C8, Canada.
| |
Collapse
|
3
|
Dandel M. Monitoring of the right ventricular responses to pressure overload: prognostic value and usefulness of echocardiography for clinical decision-making. Cardiovasc Diagn Ther 2024; 14:193-222. [PMID: 38434557 PMCID: PMC10904302 DOI: 10.21037/cdt-23-380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/10/2023] [Indexed: 03/05/2024]
Abstract
Regardless of whether pulmonary hypertension (PH) results from increased pulmonary venous pressure in left-sided heart diseases or from vascular remodeling and/or obstructions in pre-capillary pulmonary vessels, overload-induced right ventricular (RV) dysfunction and its final transition into right-sided heart failure is a major cause of death in PH patients. Being particularly suited for non-invasive monitoring of the right-sided heart, echocardiography has become a useful tool for optimizing the therapeutic decision-making and evaluation of therapy results in PH. The review provides an updated overview on the pathophysiological insights of heart-lung interactions in PH of different etiology, as well as on the diagnostic and prognostic value of echocardiography for monitoring RV responses to pressure overload. The article focuses particularly on the usefulness of echocardiography for predicting life-threatening aggravation of RV dysfunction in transplant candidates with precapillary PH, as well as for preoperative prediction of post-operative RV failure in patients with primary end-stage left ventricular (LV) failure necessitating heart transplantation or a LV assist device implantation. In transplant candidates with refractory pulmonary arterial hypertension, a timely prediction of impending RV decompensation can contribute to reduce both the mortality risk on the transplant list and the early post-transplant complications caused by severe RV dysfunction, and also to avoid combined heart-lung transplantation. The review also focuses on the usefulness of echocardiography for monitoring the right-sided heart in patients with acute respiratory distress syndrome, particularly in those with refractory respiratory failure requiring extracorporeal membrane oxygenation support. Given the pathophysiologic particularity of severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection to be associated with a high incidence of thrombotic microangiopathy-induced increase in the pulmonary resistance, echocardiography can improve the selection of temporary mechanical cardio-respiratory support strategies and can therefore contribute to the reduction of mortality rates. On the whole, the review aims to provide a theoretical and practical basis for those who are or intend in the future to be engaged in this highly demanding field.
Collapse
|
4
|
Oehler D, Oehler H, Sigetti D, Immohr MB, Böttger C, Bruno RR, Haschemi J, Aubin H, Horn P, Westenfeld R, Bönner F, Akhyari P, Kelm M, Lichtenberg A, Boeken U. Early Postoperative Neurologic Events Are Associated With Worse Outcome and Fatal Midterm Survival After Adult Heart Transplantation. J Am Heart Assoc 2023; 12:e029957. [PMID: 37548172 PMCID: PMC10492937 DOI: 10.1161/jaha.123.029957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
Background Neurologic events during primary stay in heart transplant (HTx) recipients may be associated with reduced outcome and survival, which we aim to explore with the current study. Methods and Results We screened and included all patients undergoing HTx in our center between September 2010 and December 2022 (n=268) and checked for the occurrence of neurologic events within their index stay. Neurologic events were defined as ischemic stroke, hemorrhage, hypoxic ischemic injury, or acute symptomatic neurologic dysfunction without central nervous system injury. The cohort was then divided into recipients with (n=33) and without (n=235) neurologic events after HTx. Using a multivariable Cox regression model, the association of neurologic events after HTx and survival was assessed. Recipients with neurologic events displayed a longer intensive care unit stay (30 versus 16 days; P=0.009), longer mechanical ventilation (192 versus 48 hours; P<0.001), and higher need for blood transfusion, and need for hemodialysis after HTx was substantially higher (81% versus 55%; P=0.01). Resternotomy (36% versus 26%; P=0.05) and mechanical life support (extracorporeal life support) after HTx (46% versus 24%; P=0.02) were also significantly higher in patients with neurologic events. Covariable-adjusted multivariable Cox regression analysis revealed a significant independent association of neurologic events and increased 30-day (hazard ratio [HR], 2.5 [95% CI, 1.0-6.0]; P=0.049), 1-year (HR, 2.2 [95% CI, 1.1-4.3]; P=0.019), and overall (HR, 2.5 [95% CI, 1.5-4.2]; P<0.001) mortality after HTx and reduced Kaplan-Meier survival up to 5 years after HTx (P<0.001). Conclusions Neurologic events after HTx were strongly and independently associated with worse postoperative outcome and reduced survival up to 5 years after HTx.
Collapse
Affiliation(s)
- Daniel Oehler
- Department of Cardiology, Pulmonology, and Vascular MedicineHeinrich‐Heine UniversityDuesseldorfGermany
- CARID, Cardiovascular Research Institute DüsseldorfMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Hannah Oehler
- Department of NeurologyHeidelberg UniversityHeidelbergGermany
| | - Dennis Sigetti
- Department of Cardiac SurgeryHeinrich‐Heine UniversityDuesseldorfGermany
| | | | - Charlotte Böttger
- Department of Diagnostic and Interventional RadiologyHeinrich‐Heine UniversityDuesseldorfGermany
| | - Raphael Romano Bruno
- Department of Cardiology, Pulmonology, and Vascular MedicineHeinrich‐Heine UniversityDuesseldorfGermany
- CARID, Cardiovascular Research Institute DüsseldorfMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Jafer Haschemi
- Department of Cardiology, Pulmonology, and Vascular MedicineHeinrich‐Heine UniversityDuesseldorfGermany
- CARID, Cardiovascular Research Institute DüsseldorfMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Hug Aubin
- Department of Cardiac SurgeryHeinrich‐Heine UniversityDuesseldorfGermany
| | - Patrick Horn
- Department of Cardiology, Pulmonology, and Vascular MedicineHeinrich‐Heine UniversityDuesseldorfGermany
- CARID, Cardiovascular Research Institute DüsseldorfMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Ralf Westenfeld
- Department of Cardiology, Pulmonology, and Vascular MedicineHeinrich‐Heine UniversityDuesseldorfGermany
- CARID, Cardiovascular Research Institute DüsseldorfMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Florian Bönner
- Department of Cardiology, Pulmonology, and Vascular MedicineHeinrich‐Heine UniversityDuesseldorfGermany
- CARID, Cardiovascular Research Institute DüsseldorfMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Payam Akhyari
- Department of Cardiac SurgeryHeinrich‐Heine UniversityDuesseldorfGermany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Vascular MedicineHeinrich‐Heine UniversityDuesseldorfGermany
- CARID, Cardiovascular Research Institute DüsseldorfMedical Faculty and University Hospital Düsseldorf, Heinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Artur Lichtenberg
- Department of Cardiac SurgeryHeinrich‐Heine UniversityDuesseldorfGermany
| | - Udo Boeken
- Department of Cardiac SurgeryHeinrich‐Heine UniversityDuesseldorfGermany
| |
Collapse
|
5
|
Kuroda T, Miyagi C, Fukamachi K, Karimov JH. Biventricular assist devices and total artificial heart: Strategies and outcomes. Front Cardiovasc Med 2023; 9:972132. [PMID: 36684573 PMCID: PMC9853410 DOI: 10.3389/fcvm.2022.972132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
In contrast to the advanced development of the left ventricular assist device (LVAD) therapy for advanced heart failure, the mechanical circulatory support (MCS) with biventricular assist device (BVAD) and total artificial heart (TAH) options remain challenging. The treatment strategy of BVAD and TAH therapy largely depends on the support duration. For example, an extracorporeal centrifugal pump, typically referred to as a temporary surgical extracorporeal right ventricular assist device, is implanted for the short term with acute right ventricular failure following LVAD implantation. Meanwhile, off-label use of a durable implantable LVAD is a strategy for long-term right ventricular support. Hence, this review focuses on the current treatment strategies and clinical outcomes based on each ventricle support duration. In addition, the issue of heart failure post-heart transplantation (post-HT) is explored. We will discuss MCS therapy options for post-HT recipients.
Collapse
Affiliation(s)
- Taiyo Kuroda
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Chihiro Miyagi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Jamshid H. Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Jamshid H. Karimov,
| |
Collapse
|
6
|
Kuroda T, Miyagi C, Fukamachi K, Karimov JH. Mechanical circulatory support devices and treatment strategies for right heart failure. Front Cardiovasc Med 2022; 9:951234. [PMID: 36211548 PMCID: PMC9538150 DOI: 10.3389/fcvm.2022.951234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The importance of right heart failure (RHF) treatment is magnified over the years due to the increased risk of mortality. Additionally, the multifactorial origin and pathophysiological mechanisms of RHF render this clinical condition and the choices for appropriate therapeutic target strategies remain to be complex. The recent change in the United Network for Organ Sharing (UNOS) allocation criteria of heart transplant may have impacted for the number of left ventricular assist devices (LVADs), but LVADs still have been widely used to treat advanced heart failure, and 4.1 to 7.4% of LVAD patients require a right ventricular assist device (RVAD). In addition, patients admitted with primary left ventricular failure often need right ventricular support. Thus, there is unmet need for temporary or long-term support RVAD implantation exists. In RHF treatment with mechanical circulatory support (MCS) devices, the timing of the intervention and prediction of duration of the support play a major role in successful treatment and outcomes. In this review, we attempt to describe the prevalence and pathophysiological mechanisms of RHF origin, and provide an overview of existing treatment options, strategy and device choices for MCS treatment for RHF.
Collapse
Affiliation(s)
- Taiyo Kuroda
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Chihiro Miyagi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| | - Jamshid H. Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
7
|
Triposkiadis F, Giamouzis G, Kitai T, Skoularigis J, Starling RC, Xanthopoulos A. A Holistic View of Advanced Heart Failure. Life (Basel) 2022; 12:1298. [PMID: 36143336 PMCID: PMC9501910 DOI: 10.3390/life12091298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 01/12/2023] Open
Abstract
Advanced heart failure (HF) may occur at any level of left ventricular (LV) ejection fraction (LVEF). The latter, which is widely utilized for the evaluation of LV systolic performance and treatment guidance of HF patients, is heavily influenced by LV size and geometry. As the accurate evaluation of ventricular systolic function and size is crucial in patients with advanced HF, the LVEF should be supplemented or even replaced by more specific indices of LV function such as the systolic strain and cardiac power output and size such as the LV diastolic diameters and volumes. Conventional treatment (cause eradication, medications, devices) is often poorly tolerated and fails and advanced treatment (mechanical circulatory support [MCS], heart transplantation [HTx]) is required. The effectiveness of MCS is heavily dependent on heart size, whereas HTx which is effective in the vast majority of the cases is limited by the small donor pool. Expanding the MCS indications to include patients with small ventricles as well as the HTx donor pool are major challenges in the management of advanced HF.
Collapse
Affiliation(s)
| | - Grigorios Giamouzis
- Department of Cardiology, University Hospital of Larissa, 411 10 Larissa, Greece
| | - Takeshi Kitai
- National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
| | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, 411 10 Larissa, Greece
| | - Randall C. Starling
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular, and Thoracic Institute, Cleveland, OH 44195, USA
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 411 10 Larissa, Greece
| |
Collapse
|
8
|
Wang TS, Cevasco M, Birati EY, Mazurek JA. Predicting, Recognizing, and Treating Right Heart Failure in Patients Undergoing Durable LVAD Therapy. J Clin Med 2022; 11:jcm11112984. [PMID: 35683372 PMCID: PMC9181012 DOI: 10.3390/jcm11112984] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Despite advancing technology, right heart failure after left ventricular assist device implantation remains a significant source of morbidity and mortality. With the UNOS allocation policy change, a larger proportion of patients proceeding to LVAD are destination therapy and consist of an overall sicker population. Thus, a comprehensive understanding of right heart failure is critical for ensuring the ongoing success of durable LVADs. The purpose of this review is to describe the effect of LVAD implantation on right heart function, review the diagnostic and predictive criteria related to right heart failure, and discuss the current evidence for management and treatment of post-LVAD right heart failure.
Collapse
Affiliation(s)
- Teresa S. Wang
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Correspondence: ; Tel.: +1-267-624-7276
| | - Marisa Cevasco
- Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Edo Y. Birati
- Division of Cardiovascular Medicine, Padeh-Poriya Medical Center, Bar-Ilan University, Ramat Gan 5290002, Israel;
| | - Jeremy A. Mazurek
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
9
|
Essandoh M, Kumar N, Hussain N, Dalia AA, Wang D, Al-Qudsi O, Wilsak D, Stahl D, Bhatt A, Sawyer TR, Iyer MH. Pulmonary Artery Pulsatility Index as a Predictor of Right Ventricular Failure in Left Ventricular Assist Device Recipients: A Systematic Review. J Heart Lung Transplant 2022; 41:1114-1123. [DOI: 10.1016/j.healun.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/25/2022] Open
|