1
|
Morin C, Simard É, See W, Sage M, Imane R, Nadeau C, Samson N, Lavoie PM, Chabot B, Marouan S, Tremblay S, Praud JP, Micheau P, Fortin-Pellerin É. Total liquid ventilation in an ovine model of extreme prematurity: a randomized study. Pediatr Res 2024; 95:974-980. [PMID: 37833531 DOI: 10.1038/s41390-023-02841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND This study aimed at comparing cardiorespiratory stability during total liquid ventilation (TLV)-prior to lung aeration-with conventional mechanical ventilation (CMV) in extremely preterm lambs during the first 6 h of life. METHODS 23 lambs (11 females) were born by c-section at 118-120 days of gestational age (term = 147 days) to receive 6 h of TLV or CMV from birth. Lung samples were collected for RNA and histology analyses. RESULTS The lambs under TLV had higher and more stable arterial oxygen saturation (p = 0.001) and cerebral tissue oxygenation (p = 0.02) than the lambs in the CMV group in the first 10 min of transition to extrauterine life. Although histological assessment of the lungs was similar between the groups, a significant upregulation of IL-1a, IL-6 and IL-8 RNA in the lungs was observed after TLV. CONCLUSIONS Total liquid ventilation allowed for remarkably stable transition to extrauterine life in an extremely preterm lamb model. Refinement of our TLV prototype and ventilation algorithms is underway to address specific challenges in this population, such as minimizing tracheal deformation during the active expiration. IMPACT Total liquid ventilation allows for remarkably stable transition to extrauterine life in an extremely preterm lamb model. Total liquid ventilation is systematically achievable over the first 6 h of life in the extremely premature lamb model. This study provides additional incentive to pursue further investigation of total liquid ventilation as a transition tool for the most extreme preterm neonates.
Collapse
Affiliation(s)
- Christophe Morin
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Émile Simard
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Wendy See
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michaël Sage
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roqaya Imane
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Charlène Nadeau
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nathalie Samson
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pascal M Lavoie
- Division of Neonatology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Benoît Chabot
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sofia Marouan
- Department of Pathology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sophie Tremblay
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Jean-Paul Praud
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Philippe Micheau
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Étienne Fortin-Pellerin
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada.
- Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
2
|
Sage M, See W, Nault S, Morin C, Michalski C, Chabot B, Marouan S, Lavoie PM, Micheau P, Praud JP, Fortin-Pellerin É. Effect of Low Versus High Tidal-Volume Total Liquid Ventilation on Pulmonary Inflammation. Front Physiol 2020; 11:603. [PMID: 32625110 PMCID: PMC7315809 DOI: 10.3389/fphys.2020.00603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/14/2020] [Indexed: 01/28/2023] Open
Abstract
Animal experiments suggest that total liquid ventilation (TLV) induces less ventilator-induced lung injury (VILI) than conventional mechanical gas ventilation. However, TLV parameters that optimally minimize VILI in newborns remain unknown. Our objective was to compare lung inflammation between low (L-VT) and high (H-VT) liquid tidal volume and evaluate impacts on the weaning process. Sixteen anesthetized and paralyzed newborn lambs were randomized in an L-VT group (initial tidal volume of 10 mL/kg at 10/min) and an H-VT group (initial tidal volume of 20 mL/kg at 5/min). Five unventilated newborn lambs served as controls. After 4 h of TLV in the supine position, the lambs were weaned in the prone position for another 4 h. The levels of respiratory support needed during the 4 h post-TLV were compared. The anterior and posterior lung regions were assessed by a histological score and real-time quantitative PCR for IL1B, IL6, and TNF plus 12 other exploratory VILI-associated genes. All but one lamb were successfully extubated within 2 h post-TLV (72 ± 26 min vs. 63 ± 25 min, p = 0.5) with similar FiO2 at 4 h post-TLV (27 ± 6% vs. 33 ± 7%, p = 0.3) between the L-VT and H-VT lambs. No significant differences were measured in histological inflammation scores between L-VT and H-VT lambs, although lambs in both groups exhibited slightly higher scores than the control lambs. The L-VT group displayed higher IL1B mRNA expression than the H-VT group in both anterior (2.8 ± 1.5-fold increase vs. 1.3 ± 0.4-fold increase, p = 0.02) and posterior lung regions (3.0 ± 1.0-fold change increase vs. 1.1 ± 0.3-fold increase, p = 0.002), respectively. No significant differences were found in IL6 and TNF expression levels. Gene expression changes overall indicated that L-VT was associated with a qualitatively distinct inflammatory gene expression profiles compared to H-VT, which may indicate different clinical effects. In light of these findings, further mechanistic studies are warranted. In conclusion, we found no advantage of lower tidal volume use, which was in fact associated with a slightly unfavorable pattern of inflammatory gene expression.
Collapse
Affiliation(s)
- Michaël Sage
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Wendy See
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stéphanie Nault
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christophe Morin
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christina Michalski
- BC Children’s Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sofia Marouan
- Department of Pathology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pascal M. Lavoie
- BC Children’s Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Medicine, The University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Philippe Micheau
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Paul Praud
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Étienne Fortin-Pellerin
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Pediatrics, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome. PLoS One 2018; 13:e0191885. [PMID: 29377922 PMCID: PMC5788374 DOI: 10.1371/journal.pone.0191885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
Background Filling the lung with dense liquid perfluorocarbons during total liquid ventilation (TLV) might compress the myocardium, a plausible explanation for the instability occasionally reported with this technique. Our objective is to assess the impacts of TLV on the cardiovascular system, particularly left ventricular diastolic function, in an ovine model of neonatal respiratory distress syndrome. Method Eight newborns lambs, 3.0 ± 0.4 days (3.2 ± 0.3kg) were used in this crossover experimental study. Animals were intubated, anesthetized and paralyzed. Catheters were inserted in the femoral and pulmonary arteries. A high-fidelity pressure catheter was inserted into the left ventricle. Surfactant deficiency was induced by repeated lung lavages with normal saline. TLV was then conducted for 2 hours using a liquid ventilator prototype. Thoracic echocardiography and cardiac output assessment by thermodilution were performed before and during TLV. Results Left ventricular end diastolic pressure (LVEDP) (9.3 ± 2.1 vs. 9.2 ± 2.4mmHg, p = 0.89) and dimension (1.90 ± 0.09 vs. 1.86 ± 0.12cm, p = 0.72), negative dP/dt (-2589 ± 691 vs. -3115 ± 866mmHg/s, p = 0.50) and cardiac output (436 ± 28 vs. 481 ± 59ml/kg/min, p = 0.26) were not affected by TLV initiation. Left ventricular relaxation time constant (tau) slightly increased from 21.5 ± 3.3 to 24.9 ± 3.7ms (p = 0.03). Mean arterial systemic (48 ± 6 vs. 53 ± 7mmHg, p = 0.38) and pulmonary pressures (31.3 ± 2.5 vs. 30.4 ± 2.3mmHg, p = 0.61) were stable. As expected, the inspiratory phase of liquid cycling exhibited a small but significant effect on most variables (i.e. central venous pressure +2.6 ± 0.5mmHg, p = 0.001; LVEDP +1.18 ± 0.12mmHg, p<0.001). Conclusions TLV was well tolerated in our neonatal lamb model of severe respiratory distress syndrome and had limited impact on left ventricle diastolic function when compared to conventional mechanical ventilation.
Collapse
|
4
|
Zhang H, Barralet JE. Mimicking oxygen delivery and waste removal functions of blood. Adv Drug Deliv Rev 2017; 122:84-104. [PMID: 28214553 DOI: 10.1016/j.addr.2017.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
In addition to immunological and wound healing cell and platelet delivery, ion stasis and nutrient supply, blood delivers oxygen to cells and tissues and removes metabolic wastes. For decades researchers have been trying to develop approaches that mimic these two immediately vital functions of blood. Oxygen is crucial for the long-term survival of tissues and cells in vertebrates. Hypoxia (oxygen deficiency) and even at times anoxia (absence of oxygen) can occur during organ preservation, organ and cell transplantation, wound healing, in tumors and engineering of tissues. Different approaches have been developed to deliver oxygen to tissues and cells, including hyperbaric oxygen therapy (HBOT), normobaric hyperoxia therapy (NBOT), using biochemical reactions and electrolysis, employing liquids with high oxygen solubility, administering hemoglobin, myoglobin and red blood cells (RBCs), introducing oxygen-generating agents, using oxygen-carrying microparticles, persufflation, and peritoneal oxygenation. Metabolic waste accumulation is another issue in biological systems when blood flow is insufficient. Metabolic wastes change the microenvironment of cells and tissues, influence the metabolic activities of cells, and ultimately cause cell death. This review examines advances in blood mimicking systems in the field of biomedical engineering in terms of oxygen delivery and metabolic waste removal.
Collapse
|
5
|
Bonfanti M, Cammi A, Bagnoli P. Gas transfer model to design a ventilator for neonatal total liquid ventilation. Med Eng Phys 2015; 37:1133-40. [DOI: 10.1016/j.medengphy.2015.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 06/12/2015] [Accepted: 09/11/2015] [Indexed: 11/25/2022]
|
6
|
Bagnoli P, Acocella F, Di Giancamillo M, Fumero R, Costantino ML. Finite element analysis of the mechanical behavior of preterm lamb tracheal bifurcation during total liquid ventilation. J Biomech 2013. [DOI: 10.1016/j.jbiomech.2012.10.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Total liquid ventilation provides superior respiratory support to conventional mechanical ventilation in a large animal model of severe respiratory failure. ASAIO J 2011; 57:1-8. [PMID: 21084968 DOI: 10.1097/mat.0b013e3182018a9f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Total liquid ventilation (TLV) has the potential to provide respiratory support superior to conventional mechanical ventilation (CMV) in the acute respiratory distress syndrome (ARDS). However, laboratory studies are limited to trials in small animals for no longer than 4 hours. The objective of this study was to compare TLV and CMV in a large animal model of ARDS for 24 hours. Ten sheep weighing 53 ± 4 (SD) kg were anesthetized and ventilated with 100% oxygen. Oleic acid was injected into the pulmonary circulation until PaO2:FiO2 ≤ 60 mm Hg, followed by transition to a protective CMV protocol (n = 5) or TLV (n = 5) for 24 hours. Pathophysiology was recorded, and the lungs were harvested for histological analysis. Animals treated with CMV became progressively hypoxic and hypercarbic despite maximum ventilatory support. Sheep treated with TLV maintained normal blood gases with statistically greater PO2 (p < 10(-9)) and lower PCO2 (p < 10(-3)) than the CMV group. Survival at 24 hours in the TLV and CMV groups were 100% and 40%, respectively (p < 0.05). Thus, TLV provided gas exchange superior to CMV in this laboratory model of severe ARDS.
Collapse
|
8
|
Experimental and computational biomechanical characterisation of the tracheo-bronchial tree of the bottlenose dolphin (Tursiops truncatus) during diving. J Biomech 2011; 44:1040-5. [DOI: 10.1016/j.jbiomech.2011.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 11/20/2022]
|
9
|
Bossé D, Beaulieu A, Avoine O, Micheau P, Praud JP, Walti H. Neonatal total liquid ventilation: is low-frequency forced oscillation technique suitable for respiratory mechanics assessment? J Appl Physiol (1985) 2010; 109:501-10. [PMID: 20538848 DOI: 10.1152/japplphysiol.01042.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to implement low-frequency forced oscillation technique (LFFOT) in neonatal total liquid ventilation (TLV) and to provide the first insight into respiratory impedance under this new modality of ventilation. Thirteen newborn lambs, weighing 2.5 + or - 0.4 kg (mean + or - SD), were premedicated, intubated, anesthetized, and then placed under TLV using a specially design liquid ventilator and a perfluorocarbon. The respiratory mechanics measurements protocol was started immediately after TLV initiation. Three blocks of measurements were first performed: one during initial respiratory system adaptation to TLV, followed by two other series during steady-state conditions. Lambs were then divided into two groups before undergoing another three blocks of measurements: the first group received a 10-min intravenous infusion of salbutamol (1.5 microg x kg(-1) x min(-1)) after continuous infusion of methacholine (9 microg x kg(-1) x min(-1)), while the second group of lambs was chest strapped. Respiratory impedance was measured using serial single-frequency tests at frequencies ranging between 0.05 and 2 Hz and then fitted with a constant-phase model. Harmonic test signals of 0.2 Hz were also launched every 10 min throughout the measurement protocol. Airway resistance and inertance were starkly increased in TLV compared with gas ventilation, with a resonant frequency < or = 1.2 Hz. Resistance of 0.2 Hz and reactance were sensitive to bronchoconstriction and dilation, as well as during compliance reduction. We report successful implementation of LFFOT to neonatal TLV and present the first insight into respiratory impedance under this new modality of ventilation. We show that LFFOT is an effective tool to track respiratory mechanics under TLV.
Collapse
Affiliation(s)
- Dominick Bossé
- Faculté de Médecine et des Sciences de la Santé, Département de Pédiatrie, 3001, 12e Ave. Nord, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | |
Collapse
|