1
|
Barcena AJR, Owens TC, Melancon S, Workeneh I, Tran Cao HS, Vauthey JN, Huang SY. Current Perspectives and Progress in Preoperative Portal Vein Embolization with Stem Cell Augmentation (PVESA). Stem Cell Rev Rep 2024; 20:1236-1251. [PMID: 38613627 PMCID: PMC11222268 DOI: 10.1007/s12015-024-10719-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Portal vein embolization with stem cell augmentation (PVESA) is an emerging approach for enhancing the growth of the liver segment that will remain after surgery (i.e., future liver remnant, FLR) in patients with liver cancer. Conventional portal vein embolization (PVE) aims to induce preoperative FLR growth, but it has a risk of failure in patients with underlying liver dysfunction and comorbid illnesses. PVESA combines PVE with stem cell therapy to potentially improve FLR size and function more effectively and efficiently. Various types of stem cells can help improve liver growth by secreting paracrine signals for hepatocyte growth or by transforming into hepatocytes. Mesenchymal stem cells (MSCs), unrestricted somatic stem cells, and small hepatocyte-like progenitor cells have been used to augment liver growth in preclinical animal models, while clinical studies have demonstrated the benefit of CD133 + bone marrow-derived MSCs and hematopoietic stem cells. These investigations have shown that PVESA is generally safe and enhances liver growth after PVE. However, optimizing the selection, collection, and application of stem cells remains crucial to maximize benefits and minimize risks. Additionally, advanced stem cell technologies, such as priming, genetic modification, and extracellular vesicle-based therapy, that could further enhance efficacy outcomes should be evaluated. Despite its potential, PVESA requires more investigations, particularly mechanistic studies that involve orthotopic animal models of liver cancer with concomitant liver injury as well as larger human trials.
Collapse
Affiliation(s)
- Allan John R Barcena
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit, Houston, TX, 1471, 77030, United States
- College of Medicine, University of the Philippines Manila, Manila, NCR, 1000, Philippines
| | - Tyler C Owens
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit, Houston, TX, 1471, 77030, United States
| | - Sophie Melancon
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit, Houston, TX, 1471, 77030, United States
| | - Isias Workeneh
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit, Houston, TX, 1471, 77030, United States
| | - Hop S Tran Cao
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States
| | - Steven Y Huang
- Department of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit, Houston, TX, 1471, 77030, United States.
| |
Collapse
|
2
|
Li S, Swersky A, Shah H, Salsamendi J, del Pilar Bayona Molano M. Discovery of a spontaneous portosystemic shunt following portal vein embolization. J Card Surg 2019; 34:1411-1415. [DOI: 10.1111/jocs.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuo Li
- Department of Interventional RadiologyKU‐Wichita Wesley Medical CenterWichita Kansas
| | - Adam Swersky
- Department of Interventional Radiology, Professional Arts Center, Miller School of Medicine, Jackson Memorial HospitalUniversity of MiamiMiami Florida
| | - Harsh Shah
- Department of Interventional Radiology, Professional Arts Center, Miller School of Medicine, Jackson Memorial HospitalUniversity of MiamiMiami Florida
| | - Jason Salsamendi
- Department of Interventional Radiology, Professional Arts Center, Miller School of Medicine, Jackson Memorial HospitalUniversity of MiamiMiami Florida
| | - Maria del Pilar Bayona Molano
- Department of Interventional Radiology, Professional Arts Center, Miller School of Medicine, Jackson Memorial HospitalUniversity of MiamiMiami Florida
| |
Collapse
|
3
|
Moudi B, Heidari Z, Mahmoudzadeh-Sagheb H. Study of liver in HBV-related hepatocellular carcinoma: Stereology shows quantitative differences in liver structure. Eur J Histochem 2018; 62. [PMID: 30223640 PMCID: PMC6166574 DOI: 10.4081/ejh.2018.2950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma is one of the main consequences of liver chronic disease. Hepatocellular carcinoma-related changes may be seen in patients with chronic hepatitis B. The aim of the current study was to quantitate liver tissue elements by stereological technique in patients with hepatitis B-related cancer and compare the results with control and only hepatitis B group. Needle liver biopsies from 40 patients with only chronic hepatitis B infection, from 41 patients with only early hepatocellular carcinoma, from 40 patients with early hepatitis B-related cancer and 30 healthy subjects (control group) were analyzed by stereological method using systematic uniform random sampling method. Haematoxylin and eosin stained sections were used. The numerical density of hepatocytes, hepatocyte volume, numerical density of Kupffer cells, volume density of the connective tissue in the portal space, and volume density of the connective tissue were assessed. Quantitative analysis of liver samples indicated that there were statistically significant differences in the numerical density of hepatocytes, hepatocyte volume, numerical density of Kupffer cells, volume density of the connective tissue in the portal space, and volume density of the connective tissue between control and hepatitis B-related cancer and hepatitis B groups. Quantitative, stereological technique is simple and reliable for evaluating HCC in chronic hepatitis B. It is useful for assessing the liver tissue parameters. Stereology is recommended for the diagnosis of people prone to cancer in patients with chronic hepatitis B.
Collapse
Affiliation(s)
- Bita Moudi
- Zahedan University of Medical Sciences, Infectious Diseases and Tropical Medicine Research Center, and Department of Histology.
| | | | | |
Collapse
|
4
|
Mik P, Tonar Z, Malečková A, Eberlová L, Liška V, Pálek R, Rosendorf J, Jiřík M, Mírka H, Králíčková M, Witter K. Distribution of Connective Tissue in the Male and Female Porcine Liver: Histological Mapping and Recommendations for Sampling. J Comp Pathol 2018; 162:1-13. [PMID: 30060837 DOI: 10.1016/j.jcpa.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
The pig is a large animal model that is often used in experimental medicine. The aim of this study was to assess, in normal pig livers, sexual dimorphism in the normal fraction of hepatic interlobular and intralobular connective tissue (CT) in six hepatic lobes and in three macroscopical regions of interest (ROIs) with different positions relative to the liver vasculature. Using stereological point grids, the fractions of CT were quantified in histological sections stained with aniline blue and nuclear fast red. Samples (415 tissue blocks) were collected from healthy piglets, representing paracaval, paraportal and peripheral ROIs. There was considerable variability in the CT fraction at all sampling levels. In males the mean fraction of interlobular CT was 4.7 ± 2.4% (mean ± SD) and ranged from 0% to 11.4%. In females the mean fraction of the interlobular CT was 3.6 ± 2.2% and ranged from 0% to 12.3%. The mean fraction of intralobular (perisinusoidal summed with pericentral) CT was <0.2% in both sexes. The interlobular CT represented >99.8% of the total hepatic CT and the fractions were highly correlated (Spearman r = 0.998, P <0.05). The smallest CT fraction was observed in the left medial lobe and in the paracaval ROI and the largest CT fraction was detected in the quadrate lobe and in the peripheral ROI. For planning experiments involving the histological quantification of liver fibrosis and requiring comparison between the liver lobes, these data facilitate the power analysis for sample size needed to detect the expected relative increase or decrease in the fraction of CT.
Collapse
Affiliation(s)
- P Mik
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, Pilsen, Czech Republic
| | - Z Tonar
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, Pilsen, Czech Republic.
| | - A Malečková
- European Centre of Excellence NTIS, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 22, Pilsen, Czech Republic
| | - L Eberlová
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, Pilsen, Czech Republic
| | - V Liška
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, Pilsen, Czech Republic
| | - R Pálek
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, Pilsen, Czech Republic
| | - J Rosendorf
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, Pilsen, Czech Republic
| | - M Jiřík
- European Centre of Excellence NTIS, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 22, Pilsen, Czech Republic
| | - H Mírka
- Department of Imaging Methods and Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, University Hospital in Pilsen, Czech Republic
| | - M Králíčková
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Karlovarska 48, Pilsen, Czech Republic
| | - K Witter
- Institute of Anatomy, Histology and Embryology, Department for Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, Austria
| |
Collapse
|
5
|
Biazar E. Use of umbilical cord and cord blood-derived stem cells for tissue repair and regeneration. Expert Opin Biol Ther 2014; 14:301-10. [PMID: 24456082 DOI: 10.1517/14712598.2014.867943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Potential use of umbilical cord (UC) is one of the most exciting frontiers in medicine for repairing damaged tissues. UC and cord blood-derived stem cells are the world's largest potential sources of stem cells. UC contains a mixture of stem and progenitor cells at different lineage commitment stages and UC has been verified as a candidate for cell-based therapies and tissue engineering applications due to the capability of these cells for extensive self-renewal and multi-lineage character in differentiation potential. AREAS COVERED UC-based repair or regeneration of organs (i.e., heart, nerve, skin, etc.) is a high-priority research worldwide. EXPERT OPINION The aim of this review is to summarize the knowledge about UC with main focus on its applications for tissue repair and regeneration.
Collapse
Affiliation(s)
- Esmaeil Biazar
- Islamic Azad University, Department of Biomedical Engineering, Tonekabon Branch , Tonekabon , Iran +00981924271105 ;
| |
Collapse
|
6
|
Hamasaki K, Eguchi S, Soyama A, Hidaka M, Takatsuki M, Fujita F, Kanetaka K, Minami S, Kuroki T. Chronological changes in the liver after temporary partial portal venous occlusion. World J Gastroenterol 2013; 19:5700-5705. [PMID: 24039364 PMCID: PMC3769908 DOI: 10.3748/wjg.v19.i34.5700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/25/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate time-dependent changes caused by temporal portal vein obstruction and subsequent reperfusion in the lobe with or without an occluded portal vein.
METHODS: The portal vein (PV) of the anterior lobe of the liver of a male Wistar rat (8 wk-old) was obstructed (70%) for 12, 24, 36 and 48 h, respectively, and models were sacrificed at 48 h after reperfusion (each group: n = 10). The histological changes and the status of liver regeneration were compared between a liver biopsy performed on each lobe after temporary obstruction of the portal vein in the same rat liver, and the liver extracted at the time of sacrifice (48 h after reperfusion).
RESULTS: With regard to the obstructed lobe, the liver weight/body weight ratio significantly decreased according to obstruction time. On the other hand, in the non-obstructed lobe, there were no significant differences within each group. The duration of PV occlusion did not seem to be strong enough to introduce liver weight increase. Stimulation of liver regeneration was brought about in the non-occluded lobe by 12-h occlusion, and was sustained even at 48 h after reperfusion. The obstructed lobe atrophied with the passage of time in the obstructed state. However, the proliferating-cell nuclear antigen labeling index also increased at 48 h after reperfusion, and a repair mechanism was observed.
CONCLUSION: Temporary blood flow obstruction of the portal vein may become a significant trigger for liver regeneration, even with an obstruction of 12 h.
Collapse
|
7
|
Current world literature. Curr Opin Organ Transplant 2013; 18:241-50. [PMID: 23486386 DOI: 10.1097/mot.0b013e32835f5709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Potential application of cord blood-derived stromal cells in cellular therapy and regenerative medicine. JOURNAL OF BLOOD TRANSFUSION 2012; 2012:365182. [PMID: 24066257 PMCID: PMC3771124 DOI: 10.1155/2012/365182] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/05/2012] [Indexed: 01/08/2023]
Abstract
Neonatal stromal cells from umbilical cord blood (CB) are promising alternatives to bone marrow- (BM-) derived multipotent stromal cells (MSCs). In comparison to BM-MSC, the less mature CB-derived stromal cells have been described as a cell population with higher differentiation and proliferation potential that might be of potential interest for clinical application in regenerative medicine. Recently, it has become clear that cord blood contains different stromal cell populations, and as of today, a clear distinction between unrestricted somatic stromal cells (USSCs) and CB-MSC has been established. This classification is based on the expression of DLK-1, HOX, and CD146, as well as functional examination of the adipogenic differentiation potential and the capacity to support haematopoiesis in vitro and in vivo. However, a marker enabling a prospective isolation of the rare cell populations directly out of cord blood is yet to be found. Further analysis may help to reveal even more subpopulations with different properties, which could be useful for the directed application of these cells in preclinical models.
Collapse
|