1
|
Velizarova M, Hristova J, Svinarov D, Ivanova S, Jovinska S, Abedinov P. The impact of CYP2C9 and VKORC1 genetic polymorphisms in anticoagulant therapy management after cardiac surgery with extracorporeal circulation. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e63409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Extracorporeal circulation during cardiac surgery is characterized with increased risk for hypercoagulation because blood is exposed to foreign, nonendothelial cell surfaces. Thus, the usage of extracorporeal circulation is essentially not possible without anticoagulation. Open-heart surgery as well as many perioperative factors, such as acidosis, hypocalcemia, hypothermia, and hemodilution, might affect hemostasis and lead to coagulopathy and bleeding. A new insight into the effectiveness of anticoagulant therapy is applied to modify the dosing regimen with respect to the genetic CYP2C9 and VKORC1allelic variants. A systematic literature search was performed for VKORC1 and CYP2C9 and their association with coumarin anticoagulant therapy and bleeding risk in postoperative period of cardiac surgery with extracorporeal circulation.
Collapse
|
2
|
Pratt VM, Cavallari LH, Del Tredici AL, Hachad H, Ji Y, Kalman LV, Ly RC, Moyer AM, Scott SA, Whirl-Carrillo M, Weck KE. Recommendations for Clinical Warfarin Genotyping Allele Selection: A Report of the Association for Molecular Pathology and the College of American Pathologists. J Mol Diagn 2020; 22:847-859. [PMID: 32380173 DOI: 10.1016/j.jmoldx.2020.04.204] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 11/19/2022] Open
Abstract
The goal of the Association for Molecular Pathology (AMP) Clinical Practice Committee's AMP Pharmacogenomics (PGx) Working Group is to define the key attributes of PGx alleles recommended for clinical testing and a minimum set of variants that should be included in clinical PGx genotyping assays. This document series provides recommendations for a minimum panel of variant alleles (tier 1) and an extended panel of variant alleles (tier 2) that will aid clinical laboratories when designing assays for PGx testing. The AMP PGx Working Group considered functional impact of the variants, allele frequencies in multiethnic populations, the availability of reference materials, as well as other technical considerations for PGx testing when developing these recommendations. The ultimate goal is to promote standardization of PGx gene/allele testing across clinical laboratories. These recommendations are not to be interpreted as prescriptive but to provide a reference guide. Of note, a separate article with recommendations for CYP2C9 allele selection was previously developed by the PGx Working Group that can be applied broadly to CYP2C9-related medications. The warfarin allele recommendations in this report incorporate the previous CYP2C9 allele recommendations and additional genes and alleles that are specific to warfarin testing.
Collapse
Affiliation(s)
- Victoria M Pratt
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Larisa H Cavallari
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, Florida
| | - Andria L Del Tredici
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Millennium Health, LLC, San Diego, California
| | - Houda Hachad
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Translational Software, Bellevue, Washington
| | - Yuan Ji
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | - Lisa V Kalman
- Division of Laboratory Systems, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Reynold C Ly
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ann M Moyer
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Stuart A Scott
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Sema4, a Mount Sinai venture, Stamford, Connecticut
| | - Michelle Whirl-Carrillo
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Biomedical Data Science, Stanford University, Stanford, California
| | - Karen E Weck
- The Pharmacogenomics Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Departments of Pathology and Laboratory Medicine and Genetics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|