1
|
Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins (Basel) 2022; 14:toxins14120875. [PMID: 36548772 PMCID: PMC9784998 DOI: 10.3390/toxins14120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022] Open
Abstract
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Collapse
|
2
|
Rodríguez-Vargas A, Vega N, Reyes-Montaño E, Corzo G, Neri-Castro E, Clement H, Ruiz-Gómez F. Intraspecific Differences in the Venom of Crotalus durissus cumanensis from Colombia. Toxins (Basel) 2022; 14:toxins14080532. [PMID: 36006194 PMCID: PMC9416679 DOI: 10.3390/toxins14080532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Biochemical and biological differences in the venom of Crotalus durissus cumanensis from three ecoregions of Colombia were evaluated. Rattlesnakes were collected from the geographic areas of Magdalena Medio (MM), Caribe (CA) and Orinoquía (OR). All three regionally distributed venoms contain proteases, PLA2s and the basic subunit of crotoxin. However, only crotamine was detected in the CA venom. The highest lethality, coagulant, phospholipase A2 and hyaluronidase activities were found in the MM venom. Also, some differences, observed by western blot and immunoaffinity, were found in all three venoms when using commercial antivenoms. Furthermore, all three eco-regional venoms showed intraspecific variability, considering the differences in the abundance and intensity of their components, in addition to the activity and response to commercial antivenoms.
Collapse
Affiliation(s)
- Ariadna Rodríguez-Vargas
- Grupo de Investigación en Proteínas, Universidad Nacional de Colombia, Bogotá 11001, Colombia; (N.V.); (E.R.-M.)
- Correspondence:
| | - Nohora Vega
- Grupo de Investigación en Proteínas, Universidad Nacional de Colombia, Bogotá 11001, Colombia; (N.V.); (E.R.-M.)
| | - Edgar Reyes-Montaño
- Grupo de Investigación en Proteínas, Universidad Nacional de Colombia, Bogotá 11001, Colombia; (N.V.); (E.R.-M.)
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (G.C.); (E.N.-C.); (H.C.)
| | - Edgar Neri-Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (G.C.); (E.N.-C.); (H.C.)
| | - Herlinda Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (G.C.); (E.N.-C.); (H.C.)
| | - Francisco Ruiz-Gómez
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Instituto Nacional de Salud, Bogotá 111321, Colombia;
| |
Collapse
|
3
|
Szteiter SS, Diego IN, Ortegon J, Salinas EM, Cirilo A, Reyes A, Sanchez O, Suntravat M, Salazar E, Sánchez EE, Galan JA. Examination of the Efficacy and Cross-Reactivity of a Novel Polyclonal Antibody Targeting the Disintegrin Domain in SVMPs to Neutralize Snake Venom. Toxins (Basel) 2021; 13:254. [PMID: 33807363 PMCID: PMC8066378 DOI: 10.3390/toxins13040254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/25/2022] Open
Abstract
Snake envenomation can result in hemorrhage, local necrosis, swelling, and if not treated properly can lead to adverse systemic effects such as coagulopathy, nephrotoxicity, neurotoxicity, and cardiotoxicity, which can result in death. As such, snake venom metalloproteinases (SVMPs) and disintegrins are two toxic components that contribute to hemorrhage and interfere with the hemostatic system. Administration of a commercial antivenom is the common antidote to treat snake envenomation, but the high-cost, lack of efficacy, side effects, and limited availability, necessitates the development of new strategies and approaches for therapeutic treatments. Herein, we describe the neutralization ability of anti-disintegrin polyclonal antibody on the activities of isolated disintegrins, P-II/P-III SVMPs, and crude venoms. Our results show disintegrin activity on platelet aggregation in whole blood and the migration of the SK-Mel-28 cells that can be neutralized with anti-disintegrin polyclonal antibody. We characterized a SVMP and found that anti-disintegrin was also able to inhibit its activity in an in vitro proteolytic assay. Moreover, we found that anti-disintegrin could neutralize the proteolytic and hemorrhagic activities from crude Crotalus atrox venom. Our results suggest that anti-disintegrin polyclonal antibodies have the potential for a targeted approach to neutralize SVMPs in the treatment of snakebite envenomations.
Collapse
Affiliation(s)
- Shelby S. Szteiter
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Ilse N. Diego
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Jonathan Ortegon
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Eliana M. Salinas
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Abcde Cirilo
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Armando Reyes
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Oscar Sanchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Emelyn Salazar
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Elda E. Sánchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Jacob A. Galan
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| |
Collapse
|
4
|
Pulido-Méndez MM, Azuaje E, Rodríguez-Acosta A. Immunotoxicological effects triggered by the rattlesnake Crotalus durissus cumanensis, mapanare ( Bothrops colombiensis) venoms and its purified fractions on spleen and lymph nodes cells. Immunopharmacol Immunotoxicol 2020; 42:484-492. [PMID: 32806962 DOI: 10.1080/08923973.2020.1810272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Purpose: The snakes in Venezuela vary in their different venom composition amid the species. In this sense, studies have been carried out elucidating mechanisms related to their immunostimulatory and/or immunosuppressive effects in vitro, measuring inhibition or stimulation on the mice spleen and lymph nodes lymphocytes under the rattlesnake (Crotalus durissus cumanensis) (Cdc) and mapanare (Bothrops colombiensis) crude venoms actions, and also its purified fraction crotoxin (CTX) (Cdc) and a semi-purified fraction (SPF) (Bc) activities. Material and methods: The stimulation of lymphocyte proliferation was carried out in the presence or absence of Concanavalin A (ConA) and lipopolysaccharides (LPS). Results: The lymphocyte response was measured by the Alamar Blue® (Resazurin) assay, observing that the Crotalus crude venom increased basal proliferation in the spleen and lymph nodes, being also increased with ConA and LPS. CTX slightly decreased the proliferative response in the presence of mitogens. Both Bc venom and its SPF fraction had no significant effect on basal proliferation in the spleen and lymph nodes, but a decrease in the response with ConA was observed. These results suggest that CTX has an inhibitory action on lymphocyte proliferation, while Cdc crude venom has a stimulatory action on T and B cell populations. Bothrops colombiensis venom had no effect on these two types of cell populations. As it is known, lymphocytes are cells of enormous flexibility and can operate in diverse aspects, warranting that the correct immune response persists controlled. Conclusions: These results suggested that these different toxins can modulate lymphocyte functional activation toward an inhibitory or stimulatory state.
Collapse
Affiliation(s)
- María M Pulido-Méndez
- Laboratory of Immunology, Experimental Medicine Institute, Universidad Central de Venezuela, Caracas, Bolivarian Republic of Venezuela
| | - Elvia Azuaje
- Laboratory of Immunology, Experimental Medicine Institute, Universidad Central de Venezuela, Caracas, Bolivarian Republic of Venezuela
| | - Alexis Rodríguez-Acosta
- Immunochemistry and Ultrastructural Laboratory, Anatomical Institute, Universidad Central de Venezuela, Caracas, Bolivarian Republic of Venezuela
| |
Collapse
|
5
|
Sarmiento K, Rodríguez A, Quevedo-Buitrago W, Torres I, Ríos C, Ruíz L, Salazar J, Hidalgo-Martínez P, Diez H. Comparación de la eficacia, la seguridad y la farmacocinética de los antivenenos antiofídicos: revisión de literatura. UNIVERSITAS MÉDICA 2019. [DOI: 10.11144/javeriana.umed61-1.anti] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
En Colombia se presentan anualmente alrededor de 5000 casos de mordedura de serpiente y su tratamiento se basa en la neutralización con inmunoglobulinas completas purificadas, sin embargo, globalmente se utilizan antivenenos faboterápicos. Objetivo: Dar a conocer diferencias entre las generaciones de antivenenos, la importancia del veneno en la producción de anticuerpos, comparar aspectos farmacocinéticos y los efectos adversos en pacientes. Materiales Métodos: Se realizó una búsqueda de literatura en bases de datos utilizando combinaciones de los descriptores y términos Mesh, en inglés y español. Se cotejaron parámetros farmacocinéticos en estudios preclínicos y los efectos adversos en estudios clínicos. Resultados: Se encontraron diferencias debidas al tamaño de la fracción de la inmunoglobulina que la compone, así entre más pequeña es ésta, se observa mayor distribución a los tejidos y una vida media más corta, comparada con las moléculas más pesadas. Se encontraron estudios con disminución de efectos adversos con antivenenos faboterápicos
Collapse
|
6
|
Fibrin(ogen)olytic enzymes in scorpion (Tityus discrepans) venom. Comp Biochem Physiol B Biochem Mol Biol 2014; 168:62-9. [DOI: 10.1016/j.cbpb.2013.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 11/21/2022]
|
7
|
Calvete JJ, Sanz L, Cid P, de la Torre P, Flores-Díaz M, Dos Santos MC, Borges A, Bremo A, Angulo Y, Lomonte B, Alape-Girón A, Gutiérrez JM. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America. J Proteome Res 2010; 9:528-44. [PMID: 19863078 DOI: 10.1021/pr9008749] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share about 50% of their venom proteome. The venom proteome of 6-week-old C. simus is predominantly made of the neurotoxic heterodimeric phospholipase A(2) (PLA(2) crotoxin) (55.9%) and serine proteinases (36%), whereas snake venom Zn(2+)-metalloproteinases (SVMPs), exclusively of class PIII, represent only 2% of the total venom proteins. In marked contrast, venom from adult C. simus comprises toxins from 7 protein families. A large proportion (71.7%) of these toxins are SVMPs, two-thirds of which belong to the PIII class. These toxin profiles correlate well with the overall biochemical and pharmacological features of venoms from adult (hemorrhagic) and newborn (neurotoxic) C. simus specimens. The venoms of the South American Crotalus subspecies belong to one of two distinct phenotypes. C. d. cumanensis exhibits high levels of SVMPs and low lethal potency (LD(50)), whereas C. d. subspecies terrificus, ruruima, and durissus have low SVMP activity and high neurotoxicity to mice. Their overall toxin compositions explain the outcome of envenomation by these species. Further, in all C. simus and C. durissus venoms, the concentration of neurotoxins (crotoxin and crotamine) is directly related with lethal activity, whereas lethality and metalloproteinase activity show an inverse relationship. The similar venom toxin profiles of newborn C. simus and adult C. durissus terrificus, ruruima, and durissus subspecies strongly suggests that the South American taxa have retained juvenile venom characteristics in the adult form (paedomorphism) along their North-South stepping-stone dispersal. The driving force behind paedomorphism is often competition or predation pressure. The increased concentration of the neurotoxins crotoxin and crotamine in South American rattlesnake venoms strongly argues that the gain of neurotoxicity and lethal venom activities to mammals may have represented the key axis along which overall venom toxicity has evolved during Crotalus durissus invasion of South America. The paedomorphic trend is supported by a decreasing LNC (lethal neurotoxicity coefficient, defined as the ratio between the average LD(50) of the venom and the crotoxin + crotamine concentration) along the North-South axis, coincident with the evolutionary dispersal pattern of the Neotropical rattlesnakes. The indistinguisable immunoreactivity patterns of Costa Rican and Venezuelan polyvalent antivenoms toward C. simus and C. durissus venoms strongly suggest the possibility of using these antivenoms indistinctly for the management of snakebites by adult C. simus and by certain C. d. cumanensis populations exhibiting a hemorrhagic venom phenotype. The antivenomic results also explain why the antivenoms effectively neutralize the hemorrhagic activity of adult C. simus venoms but does not protect against adult C. durissus sp. and newborn C. simus envenomations. The identification of evolutionary trends among tropical Crotalus, as reported here, may have an impact in defining the mixture of venoms for immunization to produce an effective pan-American anti-Crotalus antivenom.
Collapse
Affiliation(s)
- Juan J Calvete
- Instituto de Biomedicina de Valencia, CSIC, Jaume Roig 11, 46010 Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Salazar AM, Guerrero B, Cantu B, Cantu E, Rodríguez-Acosta A, Pérez JC, Galán JA, Tao A, Sánchez EE. Venom variation in hemostasis of the southern Pacific rattlesnake (Crotalus oreganus helleri): isolation of hellerase. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:307-16. [PMID: 18804187 PMCID: PMC2706139 DOI: 10.1016/j.cbpc.2008.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/11/2008] [Accepted: 08/20/2008] [Indexed: 11/19/2022]
Abstract
Envenomations by the southern Pacific rattlesnake (Crotalus oreganus helleri) are the most common snakebite accidents in southern California. Intraspecies venom variation may lead to unresponsiveness to antivenom therapy. Even in a known species, venom toxins are recognized as diverse in conformity with interpopulational, seasonal, ontogenetic and individual factors. Five venoms of individual C. oreganus helleri located in Riverside and San Bernardino counties of southern California were studied for their variation in their hemostatic activity. The results demonstrated that Riverside 2 and San Bernardino 1 venoms presented the highest lethal activity without hemorrhagic activity. In contrast, San Bernardino 2 and 3 venoms had the highest hemorrhagic and fibrinolytic activities with low lethal and coagulant activities. Riverside 1, Riverside 2 and San Bernardino 1 venoms presented a significant thrombin-like activity. San Bernardino 2 and 3 venoms presented an insignificant thrombin-like activity. In relation to the fibrinolytic activity, San Bernardino 3 venom was the most active on fibrin plates, which was in turn neutralized by metal chelating inhibitors. These results demonstrate the differences amongst C. oreganus helleri venoms from close localities. A metalloproteinase, hellerase, was purified by anionic and cationic exchange chromatographies from San Bernardino 3 venom. Hellerase exhibited the ability to break fibrin clots in vitro, which can be of biomedically importance in the treatment of heart attacks and strokes.
Collapse
Affiliation(s)
- Ana Maria Salazar
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020, Venezuela
| | - Belsy Guerrero
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020, Venezuela
| | - Bruno Cantu
- Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Esteban Cantu
- Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Alexis Rodríguez-Acosta
- Sección de Inmunoquímica, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - John C. Pérez
- Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Jacob A. Galán
- Departments of Biochemistry, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Andy Tao
- Departments of Biochemistry, Chemistry, and Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Elda E. Sánchez
- Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
- Address correspondence: Dr. Elda E. Sánchez, e-mail:
| |
Collapse
|