1
|
Pluta K, Porębska K, Urbanowicz T, Gąsecka A, Olasińska-Wiśniewska A, Targoński R, Krasińska A, Filipiak KJ, Jemielity M, Krasiński Z. Platelet-Leucocyte Aggregates as Novel Biomarkers in Cardiovascular Diseases. BIOLOGY 2022; 11:biology11020224. [PMID: 35205091 PMCID: PMC8869671 DOI: 10.3390/biology11020224] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Simple Summary Cardiovascular diseases are the most common cause of death worldwide. Hence, novel biomarkers are urgently needed to improve diagnosis and treatment. Platelet–leucocyte aggregates are conglomerates of platelets and leucocytes and are widely investigated as biomarkers in cardiovascular diseases. Platelet–leucocytes aggregates are present in health, but increase in patients with cardiovascular risk factors and acute or stable coronary syndromes, making them a potential diagnostic marker. Moreover, platelet–leucocyte aggregates predict outcomes after surgery or percutaneous treatment and could be used to monitor antiplatelet therapy. Emerging data about the participation of platelet–leucocyte aggregates in cardiovascular diseases pathogenesis make them an attractive target for novel therapies. Furthermore, simple detection with conventional flow cytometry provides accurate and reproducible results, although requires specific sample handling. The main task for the future is to determine the standardized protocol to measure blood concentrations of platelet–leucocyte aggregates and subsequently establish their normal range in health and disease. Abstract Platelet–leucocyte aggregates (PLA) are a formation of leucocytes and platelets bound by specific receptors. They arise in the condition of sheer stress, thrombosis, immune reaction, vessel injury, and the activation of leukocytes or platelets. PLA participate in cardiovascular diseases (CVD). Increased levels of PLA were revealed in acute and chronic coronary syndromes, carotid stenosis cardiovascular risk factors. Due to accessible, available, replicable, quick, and low-cost quantifying using flow cytometry, PLA constitute an ideal biomarker for clinical practice. PLA are promising in early diagnosing and estimating prognosis in patients with acute or chronic coronary syndromes treated by percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG). PLA were also a reliable marker of platelet activity for monitoring antiplatelet therapy. PLA consist also targets potential therapies in CVD. All of the above potential clinical applications require further studies to validate methods of assay and proof clinical benefits.
Collapse
Affiliation(s)
- Kinga Pluta
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.P.); (K.P.)
| | - Kinga Porębska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.P.); (K.P.)
| | - Tomasz Urbanowicz
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (M.J.)
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.P.); (K.P.)
- Correspondence: ; Tel.: +48-22-599-1951
| | - Anna Olasińska-Wiśniewska
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (M.J.)
| | - Radosław Targoński
- 1st Department of Cardiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Aleksandra Krasińska
- Department of Ophtalmology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Krzysztof J. Filipiak
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy in Warsaw, 00-136 Warsaw, Poland;
| | - Marek Jemielity
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (M.J.)
| | - Zbigniew Krasiński
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| |
Collapse
|
2
|
Kato T, Takeda Y, Ito H, Kurota Y, Yamagishi A, Sakurai T, Naito S, Araki A, Nara H, Asao H, Tsuchiya N. GPI-80 as a Useful Index for Myeloid Cell Heterogeneity and a Potential Prognostic Biomarker for Metastatic Renal Cell Carcinoma. TOHOKU J EXP MED 2019; 249:203-212. [PMID: 31776298 DOI: 10.1620/tjem.249.203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs), which include neutrophilic MDSCs and monocytic MDSCs, exhibit high immunosuppressive activity. Glycosylphosphatidylinositol-anchored 80 kD protein (GPI-80) is selectively expressed on mature neutrophils in healthy individuals. Increased GPI-80 expression on monocytes and variations in GPI-80 expression on neutrophils indicate the appearance of MDSCs in the peripheral blood of cancer patients. However, it is still unclear whether GPI-80 expression on myeloid cells, neutrophilic MDSCs and monocytic MDSCs, is correlated with the clinical outcomes of patients with cancer. In this study, we investigated the characteristics of myeloid cells expressing GPI-80 and the implication of GPI-80 expression in the clinical outcomes of patients with metastatic renal cell carcinoma (mRCC), in which primary renal cell carcinoma spreads from the kidney to other organs. The study included 20 patients with mRCC (a mean age of 66.0 years) and 16 healthy volunteers (a mean age of 47.8 years). To determine the heterogeneity of myeloid cells in peripheral blood samples, we performed the three-dimensional principal component analysis using the combination of GPI-80, CD16, and latency-associated peptide-1 (LAP), derived from the N-terminal region of transforming growth factor-β1 precursor. The results showed that myeloid cells in mRCC patients were widely distributed and clearly distinguishable from those in the healthy volunteers. The survival analysis revealed that GPI-80 expression on neutrophils and monocytes was correlated with poor prognostic outcomes of patients with mRCC. In conclusion, the expression of GPI-80 on myeloid cells, a useful index for the heterogeneity of MDSCs, serves as a potential prognostic biomarker for mRCC.
Collapse
Affiliation(s)
- Tomoyuki Kato
- Department of Urology, Yamagata University Faculty of Medicine
| | - Yuji Takeda
- Department of Immunology, Yamagata University Faculty of Medicine
| | - Hiromi Ito
- Department of Urology, Yamagata University Faculty of Medicine
| | - Yuta Kurota
- Department of Urology, Yamagata University Faculty of Medicine
| | | | | | - Sei Naito
- Department of Urology, Yamagata University Faculty of Medicine
| | - Akemi Araki
- Department of Immunology, Yamagata University Faculty of Medicine
| | - Hidetoshi Nara
- Department of Immunology, Yamagata University Faculty of Medicine
| | - Hironobu Asao
- Department of Immunology, Yamagata University Faculty of Medicine
| | | |
Collapse
|
3
|
Scorer TG, Reddoch-Cardenas KM, Thomas KA, Cap AP, Spinella PC. Therapeutic Utility of Cold-Stored Platelets or Cold-Stored Whole Blood for the Bleeding Hematology-Oncology Patient. Hematol Oncol Clin North Am 2019; 33:873-885. [PMID: 31466610 DOI: 10.1016/j.hoc.2019.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bleeding related to thrombocytopenia is common in hematology-oncology patients. Platelets stored at room temperature (RTPs) are the current standard of care. Platelets stored in the cold (CSPs) have enhanced hemostatic function relative to RTPs. CSPs were reported to reduce bleeding in hematology-oncology patients. Recent studies have confirmed the enhanced hemostatic properties of CSPs. CSPs may be the better therapeutic option for this population. CSPs may also offer a preferable immune profile, reduced thrombotic risk, and reduced transfusion-transmitted infection risk. The logistical advantages of CSPs would improve outcomes for many patients who currently cannot access platelet transfusions.
Collapse
Affiliation(s)
- Thomas G Scorer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol Royal Infirmary, Research Floor 7, Queens Building, Bristol, BS2 8HW, UK; Centre of Defence Pathology, Royal Centre for Defence Medicine, Birmingham, UK.
| | - Kristin M Reddoch-Cardenas
- Coagulation and Blood Research, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, BLDG 3610, JBSA-Fort Sam Houston, San Antonio, TX 78234, USA
| | - Kimberly A Thomas
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Andrew P Cap
- Coagulation and Blood Research, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, BLDG 3610, JBSA-Fort Sam Houston, San Antonio, TX 78234, USA
| | - Philip C Spinella
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Suess PM, Chinea LE, Pilling D, Gomer RH. Extracellular Polyphosphate Promotes Macrophage and Fibrocyte Differentiation, Inhibits Leukocyte Proliferation, and Acts as a Chemotactic Agent for Neutrophils. THE JOURNAL OF IMMUNOLOGY 2019; 203:493-499. [PMID: 31160533 DOI: 10.4049/jimmunol.1801559] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Fibrocytes are monocyte-derived fibroblast like cells that participate in wound healing, but little is known about what initiates fibrocyte differentiation. Blood platelets contain 60-100-mer polymers of phosphate groups called polyphosphate, and when activated, platelets induce blood clotting (the first step in wound healing) in part by the release of polyphosphate. We find that activated platelets release a factor that promotes fibrocyte differentiation. The factor is abolished by treating the crude platelet factor with the polyphosphate-degrading enzyme polyphosphatase, and polyphosphate promotes fibrocyte differentiation. Macrophages and recruited neutrophils also potentiate wound healing, and polyphosphate also promotes macrophage differentiation and induces chemoattraction of neutrophils. In support of the hypothesis that polyphosphate is a signal that affects leukocytes, we observe saturable binding of polyphosphate to these cells. Polyphosphate also inhibits leukocyte proliferation and proteasome activity. These results suggest new roles for extracellular polyphosphate as a mediator of wound healing and inflammation and also provide a potential link between platelet activation and the progression of fibrosing diseases.
Collapse
Affiliation(s)
- Patrick M Suess
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Luis E Chinea
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843
| |
Collapse
|
5
|
Haworth KJ, Weidner CR, Abruzzo TA, Shearn JT, Holland CK. Mechanical properties and fibrin characteristics of endovascular coil-clot complexes: relevance to endovascular cerebral aneurysm repair paradigms. J Neurointerv Surg 2014; 7:291-6. [PMID: 24668257 DOI: 10.1136/neurintsurg-2013-011076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Although coil embolization is known to prevent rebleeding from acutely ruptured cerebral aneurysms, the underlying biological and mechanical mechanisms have not been characterized. We sought to determine if microcoil-dependent interactions with thrombus induce structural and mechanical changes in the adjacent fibrin network. Such changes could play an important role in the prevention of aneurysm rebleeding. METHODS The stiffness of in vitro human blood clots and coil-clot complexes implanted into aneurysm phantoms were measured immediately after formation and after retraction for 3 days using unconfined uniaxial compression assays. Scanning electron microscopy of the coil-clot complexes showed the effect of coiling on clot structure. RESULTS The coil packing densities achieved were in the range of clinical practice. Bare platinum coils increased clot stiffness relative to clot alone (Young's modulus 6.9 kPa and 0.83 kPa, respectively) but did not affect fibrin structure. Hydrogel-coated coils prevented formation of a clot and had no significant effect on clot stiffness (Young's modulus 2 kPa) relative to clot alone. Clot age decreased fiber density by 0.2 fibers/µm(2) but not the stiffness of the bare platinum coil-clot complex. CONCLUSIONS The stiffness of coil-clot complexes is related to the summative stiffness of the fibrin network and associated microcoils. Hydrogel-coated coils exhibit significantly less stiffness due to the mechanical properties of the hydrogel and the inhibition of fibrin network formation by the hydrogel. These findings have important implications for the design and engineering of aneurysm occlusion devices.
Collapse
Affiliation(s)
- Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA Biomedical Engineering Program, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Todd A Abruzzo
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA Department of Neurosurgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jason T Shearn
- Biomedical Engineering Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA Biomedical Engineering Program, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Reicheltová Z, Májek P, Riedel T, Suttnar J, Dyr JE. Simplified platelet sample preparation for SDS-PAGE-based proteomic studies. Proteomics Clin Appl 2013; 6:374-81. [PMID: 22641369 DOI: 10.1002/prca.201100101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The goal of this study was to design an easy and simple protocol for platelet isolation and sample preparation for proteomic studies based on 2DE (IEF-SDS-PAGE) followed by Coomassie blue staining. EXPERIMENTAL DESIGN Blood was collected by venipuncture into tubes coated with EDTA and platelet-rich plasma (PRP) was immediately obtained by centrifugation. PRP was stored refrigerated in closed Falcon tubes for 0, 1, 2, 3, 5, and 7 days and platelets were isolated by centrifugation. 2DE gels were stained with colloidal Coomassie blue stain and evaluated using the Progenesis SameSpots software. Spots that differed significantly in the gels of fresh and stored platelet samples were excised, digested with trypsin, and further analyzed using nanoLC-MS/MS. RESULTS During the 7-day follow-up period, we found 20 spots that differed significantly (ANOVA p <0.05). During the first 2 days of PRP storage in test tubes, however, only nine spots significantly differed in all donors. In these spots, we identified 14 different proteins. CONCLUSIONS AND CLINICAL RELEVANCE In conclusion, for proteome investigations, whenever it is not feasible to prepare washed platelets immediately after blood collection, the EDTA-anticoagulated PRP can be stored in test tubes at 4°C for up to 2 days for the platelet proteome investigation.
Collapse
|
7
|
Microparticle content of plasma for transfusion is influenced by the whole blood hold conditions: pre-analytical considerations for proteomic investigations. J Proteomics 2012; 76 Spec No.:211-9. [PMID: 22813882 DOI: 10.1016/j.jprot.2012.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/21/2012] [Accepted: 07/04/2012] [Indexed: 01/18/2023]
Abstract
Microparticles (MPs) are shed from normal blood cells and may contribute to the coagulation potential of plasma. Transfusion of fresh frozen plasma (FFP) is used to correct coagulopathies and blood loss in trauma or major surgery. The role of MPs in FFP clinical efficacy is unknown. Regulations that govern the preparation of FFP vary in different countries. The aim of this study was to determine the effect of whole blood (WB)-hold conditions before FFP preparation on the MP profile. WB units were held at room temperature (RT) or combination of RT and refrigeration for up to 24h before FFP preparation. The MP content in thawed FFP was measured to reflect transfusion practice. The absolute number of MPs in FFP increased with longer WB hold time. Refrigeration of WB may also promote increased generation of MPs. In particular the number of platelet-derived and phosphatidylserine-containing MPs, which are known to have procoagulant properties, increased. Lipid peroxidation increased with longer WB-hold time. Donor-related factors appear to govern lipid peroxidation levels. Holistic proteomic and coagulant analyses of FFP MPs are warranted. Such information could guide the choice of the optimal handling conditions of WB and the most relevant quality control procedures for FFP. This article is part of a Special Issue entitled: Integrated omics.
Collapse
|
8
|
Egidi MG, Rinalducci S, Marrocco C, Vaglio S, Zolla L. Proteomic analysis of plasma derived from platelet buffy coats during storage at room temperature. An application of ProteoMiner™ technology. Platelets 2011; 22:252-69. [PMID: 21405958 DOI: 10.3109/09537104.2010.550348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study was aimed at revealing new insights into the analysis of storage-related processes occurring in the supernatants of platelet concentrates (PCs) derived from pooled buffy coats suspended in whole plasma. To reduce the dynamic range of plasma protein concentrations and access low-abundance proteins, we made use of a solid-phase combinatorial peptide ligand library, known under the trade name of ProteoMiner™. Afterwards, two-dimensional electrophoresis (2-DE) was coupled with mass spectrometry (MS) to reveal changes in proteomic profiles. Several storage-induced protein alterations were identified including changes to major plasma proteins. In particular, a precursor of the secretory form of clusterin was shown to accumulate during storage of PC supernatants, together with platelet-derived tropomyosin, suggesting a progressive loss of platelet integrity. Platelet-released proteins following activation have also been detected (alpha-1-B-glycoprotein, kininogen-1, and serpin proteinase inhibitor 8). Moreover, specific protein fragments (vitronectin, plakoglobin, hornerin, and apolipoprotein A-IV) were found to be modulated upon storage, possibly indicating a time-dependent buffy-coat PC deterioration. Globally, our findings provided the disclosure of unique proteins in PC supernatants with respect to previous studies conducted in similar experimental conditions, suggesting ProteoMiner enrichment technology to be a possible complementary tool in the identification of diagnostically relevant proteins as age/quality biomarkers of therapeutic products.
Collapse
Affiliation(s)
- Maria Giulia Egidi
- Department of Environmental Sciences, University of Tuscia, Viterbo, Italy
| | | | | | | | | |
Collapse
|
9
|
Yi J, Craft D, Gelfand CA. Minimizing preanalytical variation of plasma samples by proper blood collection and handling. Methods Mol Biol 2011; 728:137-49. [PMID: 21468945 DOI: 10.1007/978-1-61779-068-3_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Blood samples collected for proteome studies are subject to a variety of preanalytical instability, among which intrinsic proteolysis activities cause a broad spectrum of protein and peptide degradation. This chapter describes two MALDI MS-based methods for plasma peptidomic analyses; a direct MALDI-TOF MS and an LC MALDI-TOF MS. Using these methods, we compared peptides and their time-dependent changes in traditional serum, four plasma samples with different anticoagulants and additives: EDTA-based, citrate-based, or heparin-based, and EDTA-based with protease inhibitors. For minimizing plasma sample instability and preanalytical variation, we suggest using an optimized blood collection device, minimizing the dwell time during blood collection and handling, controlling centrifugation and handling at room temperature, and saving plasma samples for use at most one freeze/thaw cycle. We have optimized our protocol to achieve reproducibility in peptidomic analyses of plasma samples using MALDI-TOF MS by minimizing preanalytical and analytical variability.
Collapse
Affiliation(s)
- Jizu Yi
- BD Diagnostics, Franklin Lakes, NJ, USA.
| | | | | |
Collapse
|
10
|
Troubleshooting in platelet storage temperature and new perspectives through proteomics. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2010; 8 Suppl 3:s73-81. [PMID: 20606754 DOI: 10.2450/2010.012s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|