1
|
Dugbartey GJ. Emerging role of carbon monoxide in intestinal transplantation. Biomed Pharmacother 2021; 143:112237. [PMID: 34649361 DOI: 10.1016/j.biopha.2021.112237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022] Open
Abstract
Intestinal transplantation has become an established therapeutic option that provides improved quality of life to patients with end-stage intestinal failure when total parenteral nutrition fails. Whereas this challenging life-saving intervention has shown exceptional growth over the past decade, illustrating the evolution of this complex and technical procedure from its preclinical origin in the mid-20th century to become a routine clinical practice today with several recent innovations, its success is hampered by multiple hurdles including technical challenges such as surgical manipulation during intestinal graft procurement, graft preservation and reperfusion damage, resulting in poor graft quality, graft rejection, post-operative infectious complications, and ultimately negatively impacting long-term recipient survival. Therefore, strategies to improve current intestinal transplantation protocol may have a significant impact on post-transplant outcomes. Carbon monoxide (CO), previously considered solely as a toxic gas, has recently been shown to be a physiological signaling molecule at low physiological concentrations with therapeutic potentials that could overcome some of the challenges in intestinal transplantation. This review discusses recent knowledge about CO in intestinal transplantation, the underlying molecular mechanisms of protection during intestinal graft procurement, preservation, transplantation and post-transplant periods. A section of the review also discusses clinical translation of CO and its challenges in the field of solid organ transplantation.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
2
|
Adach W, Olas B. A comparison of multifunctional donors of carbon monoxide: Their anticoagulant, antioxidant, anti-aggregatory and cytotoxicity activities in an in vitro model. Nitric Oxide 2020; 97:20-26. [PMID: 32006712 DOI: 10.1016/j.niox.2020.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/14/2019] [Accepted: 01/28/2020] [Indexed: 12/24/2022]
Abstract
The study examines the effect of two water-soluble carbon monoxide (CO) donors, CORM-3 and CORM-A1, on selected parameters of oxidative stress and hemostasis in human plasma and blood platelets in vitro. It also compares their activity with that of the lipid-soluble CORM-2. The oxidation of amino acid residues in plasma proteins was evaluated by measuring the amounts of thiol and carbonyl groups. Plasma lipid peroxidation was measured as thiobarbituric acid reactive substance (TBARS) concentration. In addition, three haemostatic parameters of plasma were studied, viz. activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT), and one haemostatic parameter of platelets (platelet aggregation). Treatment with CORM-3 and CORM-A1 (all concentrations from 0.1 to 100 μM) decreased thiol group oxidation induced by H2O2/Fe. Incubation with CORM-3 and CORM-A1 also influenced plasma coagulation activity, e.g. CORM-3 and CORM-A1 significantly prolonged TT at the two highest tested concentrations (50 and 100 μM). Only CORM-2 at the highest tested concentration (100 μM) and CORM-3 (50 and 100 μM) reduced platelet aggregation induced by ADP. None of the tested CORMs caused platelet damage. The treatment of various diseases associated with oxidative stress, including cardiovascular diseases, may be enhanced by the administration of CO donors CORM-2 and CORM-3, these being modulators of oxidative stress and hemostasis.
Collapse
Affiliation(s)
- Weronika Adach
- University of Lodz, Department of General Biochemistry, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland
| | - Beata Olas
- University of Lodz, Department of General Biochemistry, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
3
|
Donaghy D, Yoo S, Johnson T, Nielsen V, Olver C. Carbon Monoxide-Releasing Molecule Enhances Coagulation and Decreases Fibrinolysis in Normal Canine Plasma. Basic Clin Pharmacol Toxicol 2018; 123:257-262. [PMID: 29577635 DOI: 10.1111/bcpt.13015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/16/2018] [Indexed: 01/17/2023]
Abstract
The dog is an important companion animal and also purpose-bred for research studies. Coagulopathies in dogs are common, although the availability of blood products for therapy is inconsistent throughout the profession. A pro-coagulant therapeutic that is readily available and easily stored would be useful for the treatment of coagulopathies. Tricarbonyldichlororuthenium (II) dimer [Carbon monoxide-releasing molecule-2 (CORM-2)] acts as a prothrombotic agent in plasma by increasing the velocity of clot formation and clot strength, and by decreasing the clot's vulnerability to fibrinolysis. We sought to test CORM-2's effect on coagulation and fibrinolysis in vitro in canine plasma using thromboelastography. Measures of the rate of clot formation and clot strength in plasma without CORM-2 were highly correlated with fibrinogen concentration. We found that CORM-2 significantly enhanced the rate of clot formation and clot strength and significantly reduced the rate of fibrinolysis and the clot lysis time. The per cent change in rate of clot formation and clot strength was not significantly correlated with fibrinogen concentration, indicating that CORM-2's pro-coagulant effect is not dependent on fibrinogen concentration. This study corroborates studies in other species that show that CORM-2 is pro-coagulant in plasma, and lays the groundwork for developing CORM-2 as a therapeutic agent for canine coagulopathies. Future studies will evaluate the effect of CORM-2 on whole blood both in vitro and in vivo.
Collapse
Affiliation(s)
- Dillon Donaghy
- Department of Microbiology, Immunology and Pathology, Clinical Pathology Section, Colorado State University, Fort Collins, CO, USA
| | - Seung Yoo
- Seattle Veterinary Specialists, Kirkland, WA, USA
| | - Tyler Johnson
- Department of Microbiology, Immunology and Pathology, Clinical Pathology Section, Colorado State University, Fort Collins, CO, USA
| | - Vance Nielsen
- Department of Anesthesia, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Christine Olver
- Department of Microbiology, Immunology and Pathology, Clinical Pathology Section, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
4
|
Adach W, Olas B. The role of CORM-2 as a modulator of oxidative stress and hemostatic parameters of human plasma in vitro. PLoS One 2017; 12:e0184787. [PMID: 28950024 PMCID: PMC5614530 DOI: 10.1371/journal.pone.0184787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The main aim of the experiment is to examine the effect of CORM-2, a donor of carbon monoxide (CO), on oxidative stress in human plasma in vitro. In addition, it examines the effects of CORM-2 on the hemostatic parameters of plasma: the activated partial thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT). METHODS Human plasma was incubated for 5-60 min with different concentrations of CORM-2: 0.1-100 μM. Following this, various hemostatic factors and biomarkers of oxidative stress were studied. Lipid peroxidation was measured as thiobarbituric acid reactive substance (TBARS) concentration, and the oxidation of amino acid residues in proteins was measured by determining the amounts of carbonyl and thiol groups. RESULTS Two oxidative stress inducers: hydrogen peroxide (H2O2) and the donor of hydroxyl radical (H2O2/Fe) were used. Decrease in protein carbonylation, thiol group oxidation and lipid peroxidation were detected at tested concentrations of CORM-2. CONCLUSION Our results indicate that CORM-2 may have antioxidant properties in human plasma treated with H2O2 or H2O2/Fe. In addition, our results indicate the anti-coagulant activities of CORM-2 in vitro.
Collapse
Affiliation(s)
- Weronika Adach
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|
5
|
Ling K, Men F, Wang WC, Zhou YQ, Zhang HW, Ye DW. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs). J Med Chem 2017; 61:2611-2635. [PMID: 28876065 DOI: 10.1021/acs.jmedchem.6b01153] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon monoxide (CO) is attracting increasing attention because of its role as a gasotransmitter with cytoprotective and homeostatic properties. Carbon monoxide releasing molecules (CORMs) are spatially and temporally controlled CO releasers that exhibit superior and more effective pharmaceutical traits than gaseous CO because of their chemistry and structure. Experimental and preclinical research in animal models has shown the therapeutic potential of inhaled CO and CORMs, and the biological effects of CO and CORMs have also been observed in preclinical trials via the genetic modulation of heme oxygenase-1 (HO-1). In this review, we describe the pharmaceutical use of CO and CORMs, methods of detecting CO release, and developments in CORM design and synthesis. Many valuable clinical CORMs formulated using macromolecules and nanomaterials are also described.
Collapse
Affiliation(s)
- Ken Ling
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China.,Department of Anesthesiology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Fang Men
- College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Wei-Ci Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Hao-Wen Zhang
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430030 , China
| |
Collapse
|
6
|
Iron and carbon monoxide attenuate degradation of plasmatic coagulation by Crotalus atrox venom. Blood Coagul Fibrinolysis 2017; 27:506-10. [PMID: 26575491 DOI: 10.1097/mbc.0000000000000440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypofibrinogenemia is an important clinical consequence following envenomation by Crotalus species, usually attenuated or prevented by administration of antivenom. It has been determined that iron and carbon monoxide (CO) enhance fibrinogen as a thrombin substrate, likely secondary to conformational changes in molecular structure. We tested the hypothesis that pretreatment of plasma with iron and CO could attenuate the effects of exposure to Crotalus atrox venom. Human plasma was exposed to 0 to 10 μmol/l ferric chloride (iron source) and 0 to 100 μmol/l CO-releasing molecule-2 (CO source) followed by exposure to 0 to 0.5 μg/ml venom for 5 to 20 min. Changes in coagulation kinetics were determined with thrombelastography. Iron and CO significantly attenuated venom-mediated degradation of plasmatic coagulation in terms of onset time, velocity of clot growth and final clot strength. Further preclinical investigation of iron and CO administration as a 'bridge-to-antivenom' to preserve plasmatic coagulation is justified.
Collapse
|
7
|
Effect of iron and carbon monoxide on fibrinogenase-like degradation of plasmatic coagulation by venoms of four Crotalus species. Blood Coagul Fibrinolysis 2017; 28:34-39. [DOI: 10.1097/mbc.0000000000000529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Iron and carbon monoxide attenuate Crotalus atrox venom-enhanced tissue-type plasminogen activator-initiated fibrinolysis. Blood Coagul Fibrinolysis 2016; 27:511-6. [DOI: 10.1097/mbc.0000000000000439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Stolt C, Schmidt IHE, Sayfart Y, Steinmetz I, Bast A. Heme Oxygenase-1 and Carbon Monoxide PromoteBurkholderia pseudomalleiInfection. THE JOURNAL OF IMMUNOLOGY 2016; 197:834-46. [DOI: 10.4049/jimmunol.1403104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/26/2016] [Indexed: 12/25/2022]
|
10
|
Left Ventricular Assist Device-Associated Carbon Monoxide and Iron-Enhanced Hypercoagulation: Impact of Concurrent Disease. ASAIO J 2016; 61:417-23. [PMID: 25710774 DOI: 10.1097/mat.0000000000000210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Left ventricular assist device (LVAD) therapy is associated with thrombophilia despite anticoagulation. Of interest, LVAD patients have increased carboxyhemoglobin, a measure of upregulated heme oxygenase (Hmox) activity that releases carbon monoxide (CO) and iron. Given that CO and iron enhance plasmatic coagulation, we determined if LVAD patients had hypercoagulability and decreased fibrinolytic vulnerability with measurable CO and iron-mediated effects. Blood samples were obtained a month or more after implantation of the LVAD. Thrombelastographic methods to assess coagulation kinetics, fibrinolytic kinetics, formation of carboxyhemefibrinogen, and iron-mediated enhancement of clot growth were utilized. Coagulation and fibrinolytic parameter normal individual (n = 30) plasma values were determined. Sixteen LVAD patients were studied. CO and iron enhancement of coagulation were observed in the majority of LVAD patients, contributing to hypercoagulation. However, most patients demonstrated abnormally increased rates of clot lysis. Critically, hemolysis as assessed by circulating lactate dehydrogenase activity was small in this cohort, and only four patients without comorbid states (e.g., obesity, diabetes, sleep apnea) were hypercoagulable with evidence of Hmox upregulation. However, seven patients with comorbidities were hypercoagulable with Hmox upregulation. Future investigation of CO and iron-related thrombophilia and comorbid disease is warranted to define its role in LVAD-related thrombosis.
Collapse
|
11
|
Nielsen VG, Bazzell CM. Carbon monoxide attenuates the effects of snake venoms containing metalloproteinases with fibrinogenase or thrombin-like activity on plasmatic coagulation. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00336b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon monoxide released from CORM-2 inhibitsCrotalus atroxsnake venom metalloproteinase mediated decreases in human plasma velocity of coagulation.
Collapse
Affiliation(s)
- Vance G. Nielsen
- Department of Anesthesiology
- The University of Arizona College of Medicine
- Tucson
- USA
| | - Charles M. Bazzell
- Department of Anesthesiology
- The University of Arizona College of Medicine
- Tucson
- USA
| |
Collapse
|
12
|
Nielsen VG. Iron and carbon monoxide prevent degradation of plasmatic coagulation by thrombin-like activity in rattlesnake venom. Hum Exp Toxicol 2015; 35:1116-22. [PMID: 26666988 DOI: 10.1177/0960327115621366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thousands suffer poisonous snake bite, often from defibrinogenating species annually. Three rattlesnake species in particular, the timber rattlesnake, Eastern diamondback rattlesnake, and Southern Pacific rattlesnake, cause clinically relevant hypofibrinogenemia via thrombin-like activity in their venom. It has been demonstrated that iron (Fe) and carbon monoxide (CO) change the ultrastructure of plasma thrombi and improve coagulation kinetics. Thus, the present investigation sought to determine if pretreatment of plasma with Fe and CO could attenuate venom-mediated catalysis of fibrinogen via thrombin-like activity. Human plasma was pretreated with ferric chloride (0-10 μM) and CO-releasing molecule-2 (0-100 μM) prior to exposure to 2.5-10 μg/ml of venom obtained from the aforementioned three species of rattlesnake. Coagulation kinetics were determined with thrombelastography. All three snake venoms degraded plasmatic coagulation kinetics to a significant extent, especially diminishing the speed of clot growth and strength. Pretreatment of plasma with Fe and CO completely abrogated the effects of all three venoms on coagulation kinetics. Further in vitro investigation of other pit viper venoms that possess thrombin-like activity is indicated to see if there is significant conservation of venom enzymatic target recognition of specific amino acid sequences such that Fe and CO can reliably attenuate venom-mediated catalysis of fibrinogen. These data also serve as a rationale for future preclinical investigation.
Collapse
Affiliation(s)
- V G Nielsen
- Department of Anesthesiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
13
|
Nielsen VG, Redford DT, Boyle PK. Effect of Iron and Carbon Monoxide on Fibrinogenase-like Degradation of Plasmatic Coagulation by Venoms of SixAgkistrodonSpecies. Basic Clin Pharmacol Toxicol 2015; 118:390-5. [DOI: 10.1111/bcpt.12504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/08/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Vance G. Nielsen
- Department of Anesthesiology; The University of Arizona College of Medicine; Tucson AZ USA
| | - Daniel T. Redford
- Department of Anesthesiology; The University of Arizona College of Medicine; Tucson AZ USA
| | - Patrick K. Boyle
- Department of Anesthesiology; The University of Arizona College of Medicine; Tucson AZ USA
| |
Collapse
|
14
|
Bariatric patients have plasmatic hypercoagulability and systemic upregulation of heme oxygenase activity. Blood Coagul Fibrinolysis 2015; 26:200-4. [PMID: 25101516 DOI: 10.1097/mbc.0000000000000194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Morbid obesity is associated with significant thrombophilia. Of interest, adipocytes obtained from obese patients have increased heme oxygenase (Hmox) activity, the endogenous enzyme responsible for carbon monoxide (CO) production. Given that CO enhances plasmatic coagulation, we determined whether morbidly obese patients undergoing bariatric surgery had an increase in endogenous CO and plasmatic hypercoagulability. CO was determined by noninvasive pulse oximetry measurement of carboxyhemoglobin (COHb). A thrombelastographic method to assess plasma coagulation kinetics and formation of carboxyhemefibrinogen (COHF) was utilized. Nonsmoking bariatric patients (n = 20, BMI 47 ± 8 kg/m, mean ± SD) had abnormally increased COHb concentrations of 2.7 ± 1.9%, indicative of Hmox upregulation. When coagulation kinetics of these bariatric patients were compared with values obtained from normal individuals' (n = 30) plasma, 70% (95% confidence interval 45.7-88.1%) had abnormally great velocity of clot formation, abnormally large clot strength, and COHF formation. Future investigation of Hmox-derived CO in the pathogenesis of obesity-related thrombophilia is warranted.
Collapse
|
15
|
Hemodialysis patients have plasmatic hypercoagulability and decreased fibrinolytic vulnerability: role of carbon monoxide. ASAIO J 2015; 60:716-21. [PMID: 25232771 DOI: 10.1097/mat.0000000000000144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic hemodialysis is associated with significant thrombophilia. Of interest, hemodialysis patients have increased carboxyhemoglobin (COHb) and exhaled carbon monoxide (CO), signs of upregulated heme oxygenase (Hmox) activity. Given that CO enhances plasmatic coagulation, we determined whether patients requiring chronic hemodialysis had an increase in endogenous CO, plasmatic hypercoagulability and decreased fibrinolytic vulnerability. Carbon monoxide was determined by noninvasive pulse oximetry measurement of COHb. Blood samples were obtained just before hemodialysis. Thrombelastographic methods to assess plasma coagulation kinetics, fibrinolytic kinetics, and formation of carboxyhemefibrinogen (COHF) were used. Hemodialysis patients (n = 45) had abnormally increased COHb concentrations of 2.2 ± 1.9%, indicative of Hmox upregulation. Coagulation and fibrinolytic parameter normal values were determined with normal individual (n = 30) plasma. Thirty-seven patients of the hemodialysis cohort had COHF formation (82.2%, [67.9%-92.0%]; mean, [95% confidence interval]), and many of this group of patients had abnormally great velocity of clot growth (73.3%, [58.1%-85.4%]) and strength (75.6%, [60.5%-87.1%]). Furthermore, over half of COHF positive patients had a hypofibrinolytic state, evidenced by an abnormally prolonged time to maximum rate of lysis (53.3%, [37.9%-68.6%]) and clot lysis time (64.4%, [48.8%-78.1%]). Carbon monoxide enhanced coagulation and diminished fibrinolytic vulnerability in hemodialysis patients. Future investigation of hemodialysis, CO-related thrombophilia is warranted.
Collapse
|
16
|
Iron and carbon monoxide enhance coagulation and attenuate fibrinolysis by different mechanisms. Blood Coagul Fibrinolysis 2015; 25:695-702. [PMID: 24732176 DOI: 10.1097/mbc.0000000000000128] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two parallel lines of investigation elucidating novel mechanisms by which iron (scanning electron microscopy-based) and carbon monoxide (viscoelastic-based) enhance coagulation and diminish fibrinolysis have emerged over the past few years. However, a multimodal approach to ascertain the effects of iron and carbon monoxide remained to be performed. Such investigation could be important, as iron and carbon monoxide are two of the products of heme catabolism via heme oxygenase-1, an enzyme upregulated in a variety of disease states associated with thrombophilia. Human plasma was exposed to ferric chloride, carbon monoxide derived from carbon monoxide-releasing molecule-2, or their combination. Viscoelastic studies demonstrated ferric chloride and carbon monoxide mediated enhancement of velocity of growth, and final clot strength, with the combination of the two molecules noted to have all the prothrombotic kinetic effects of either separately. Parallel ultrastructural studies demonstrated separate types of fibrin polymer cross-linking and matting in plasma exposed to ferric chloride and carbon monoxide, with the combination sharing features of each molecule. In conclusion, we present the first evidence that iron and carbon monoxide interact with key coagulation and fibrinolytic processes, resulting in thrombi that begin to form more quickly, grow faster, become stronger, and are more resistant to lysis.
Collapse
|
17
|
Comparison of the effects of CORM-2, CORM-3 and CORM-A1 on coagulation in human plasma. Blood Coagul Fibrinolysis 2014; 25:801-5. [DOI: 10.1097/mbc.0000000000000146] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Abstract
BACKGROUND Patients with brain tumors suffer significant thrombotic morbidity and mortality. In addition to increased thrombin generation via tumor release of tissue factor-bearing microparticles and hyperfibrinogenemia, brain tumors and surrounding normal brain likely generate endogenous carbon monoxide (CO) via the hemeoxygenase-1 (HO-1) system. CO has been shown to enhance plasmatic coagulation via formation of carboxyhemefibrinogen (COHF). Thus, our goals in this study were to determine whether patients with brain tumors had increased HO-1 upregulation/CO production, plasmatic hypercoagulability, and formation of COHF. METHODS Patients with brain tumors (N = 20) undergoing craniotomy had blood collected for determination of carboxyhemoglobin as a marker of HO-1 activity, plasmatic hypercoagulability (defined as clot strength > 95% confidence interval value of normal subject plasma), and COHF formation (determined with a thrombelastograph-based assay). Plasma obtained from commercially available normal subjects (N = 30) was used for comparison with brain tumor patient samples. RESULTS Brain tumor patients had carboxyhemoglobin concentrations of 1.5% ± 0.5% (mean ± SD), indicative of HO-1 upregulation. Compared with normal subject plasma, brain tumor patient plasma had significantly (P < 0.0001) greater clot formation velocity (5.2 ± 1.5 vs 9.5 ± 2.3 dynes/cm/s, respectively) and significantly (P = 0.00016) stronger final clot strength (166 ± 28 vs 230 ± 78 dynes/cm, respectively). Ten of the brain tumor patients had plasma clot strength that exceeded the 95% confidence interval value observed in normal subjects, and 12 of the brain tumor patients had COHF formation. Five of the brain tumor patients in the hypercoagulable subgroup had COHF formation. Last, 5 of the hypercoagulable patients had primary brain tumors, whereas the other 5 patients had metastatic tumors or an inflammatory mass lesion. CONCLUSIONS A subset of patients with brain tumors has increased endogenous CO production, plasmatic hypercoagulability, and COHF formation. Future investigation of the role played by HO-1 derived CO in the pathogenesis of brain tumor-associated thrombophilia is warranted.
Collapse
|
19
|
Nielsen VG, Pretorius E. Carbon monoxide: Anticoagulant or procoagulant? Thromb Res 2013; 133:315-21. [PMID: 24360115 DOI: 10.1016/j.thromres.2013.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022]
Abstract
Within the past decade there have been several investigations attempting to define the impact of exogenous and endogenous carbon monoxide exposure on hemostasis. Critically, two bodies of literature have emerged, with carbon monoxide mediated platelet inhibition cited as a cause of in vitro human and in vitro/in vivo rodent anticoagulation. In contrast, interaction with heme groups associated with fibrinogen, α₂-antiplasmin and plasmin by carbon monoxide has resulted in enhanced coagulation and decreased fibrinolysis in vitro in human and other species, and in vivo in rabbits. Of interest, the ultrastructure of platelet rich plasma thrombi demonstrates an abnormal increase in fine fiber formation and matting that are obtained from humans exposed to carbon monoxide. Further, thrombi obtained from humans and rabbits have very similar ultrastructures, whereas mice and rats have more fine fibers and matting present. In sum, there may be species specific differences with regard to hemostatic response to carbon monoxide. Carbon monoxide may be a Janus-faced molecule, with potential to attenuate or exacerbate thrombophilic disease.
Collapse
Affiliation(s)
- Vance G Nielsen
- The Department of Anesthesiology, The University of Arizona College of Medicine, Tucson, AZ, USA.
| | - Etheresia Pretorius
- The Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| |
Collapse
|
20
|
Lu D, Owens J, Kreutz RP. Plasma and whole blood clot strength measured by thrombelastography in patients treated with clopidogrel during acute coronary syndromes. Thromb Res 2013; 132:e94-8. [PMID: 23920429 DOI: 10.1016/j.thromres.2013.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/27/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Treatment with clopidogrel, a selective platelet P2Y12 receptor antagonist, reduces risk of recurrent ischemic events in patients with acute coronary syndrome (ACS), by limiting platelet aggregation and activation. Stable whole blood clot formation requires activation of platelets, generation of fibrin and final fibrin crosslinks. In this study we intended to compare plasma and whole blood thrombelastography (TEG) measurements in patients during ACS. MATERIALS AND METHODS Whole blood and plasma samples from 32 patients with non-ST segment elevation myocardial infarction (NSTEMI) were collected after administration of clopidogrel. Whole blood and plasma fibrin clot strength (MA) were determined by TEG. Platelet aggregation was determined by light transmittance aggregometry (LTA) using adenosine 5'-diphosphate (ADP), thrombin receptor activation peptide (TRAP), or collagen as agonists. Fibrinogen and C-reactive protein (CRP) concentrations were measured by ELISA. RESULTS Heightened plasma fibrin clot strength was associated with increased platelet reactivity stimulated by ADP (ρ=0.536; p=0.002), TRAP (ρ=0.481; p=0.007), and collagen (ρ=0.538; p=0.01). In contrast to plasma fibrin MA, whole blood MA did not correlate with platelet aggregation. Platelet count was the primary contributor to the difference in thrombin induced whole blood MA and plasma fibrin MA. Increasing levels of CRP were associated with increased plasma fibrin clot strength and platelet reactivity. CONCLUSIONS Our data suggest that inflammation is associated with increased plasma fibrin clot strength and lower platelet inhibition by clopidogrel during ACS. Platelet count is a main contributor to additional contractile force of whole blood TEG as compared to plasma TEG during treatment with clopidogrel.
Collapse
Affiliation(s)
- Deshun Lu
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
21
|
Nielsen VG, Pearson EC, Smith MC. Increased Carbon Monoxide Production by Hemeoxygenase-1 Caused by Device-Mediated Hemolysis: Thrombotic Phantom Menace? Artif Organs 2013; 37:1008-14. [DOI: 10.1111/aor.12122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Vance G. Nielsen
- Department of Anesthesiology; The University of Arizona College of Medicine; Tucson AZ USA
| | - Ellen C. Pearson
- Department of Surgery; The University of Arizona College of Medicine; Tucson AZ USA
| | - M. Cristina Smith
- Department of Surgery; The University of Arizona College of Medicine; Tucson AZ USA
| |
Collapse
|
22
|
Can divergent plasmin–antiplasmin–carbon monoxide interactions in young, healthy tobacco smokers explain the ‘smokerʼs paradox’? Blood Coagul Fibrinolysis 2013; 24:381-5. [DOI: 10.1097/mbc.0b013e32835d53ec] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Van Phan T, Sul OJ, Ke K, Lee MH, Kim WK, Cho YS, Kim HJ, Kim SY, Chung HT, Choi HS. Carbon monoxide protects against ovariectomy-induced bone loss by inhibiting osteoclastogenesis. Biochem Pharmacol 2013; 85:1145-52. [DOI: 10.1016/j.bcp.2013.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 12/15/2022]
|
24
|
Thrombelastographic characterization of coagulation/fibrinolysis in horses. Blood Coagul Fibrinolysis 2013; 24:273-8. [DOI: 10.1097/mbc.0b013e32835bfd6e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Freezing does not decrease carbon monoxide-mediated hypercoagulation and hypofibrinolysis in human plasma. Blood Coagul Fibrinolysis 2012; 23:784-6. [DOI: 10.1097/mbc.0b013e328358e8d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Maruyama K, Morishita E, Yuno T, Sekiya A, Asakura H, Ohtake S, Yachie A. Carbon monoxide (CO)-releasing molecule-derived CO regulates tissue factor and plasminogen activator inhibitor type 1 in human endothelial cells. Thromb Res 2012; 130:e188-93. [PMID: 22819264 DOI: 10.1016/j.thromres.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/02/2012] [Accepted: 07/04/2012] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Heme oxygenase-1 (HO-1) is the rate limiting enzyme that catalyzes the conversion of heme into biliverdin, free iron, and carbon monoxide (CO). The first human case of HO-1 deficiency showed abnormalities in blood coagulation and the fibrinolytic system. Thus, HO-1 or HO-1 products, such as CO, might regulate coagulation and the fibrinolytic system. This study examined whether tricarbonyldichlororuthenium (II) dimer (CORM-2), which liberates CO, modulates the expression of tissue factor (TF) and plasminogen activator inhibitor type 1 (PAI-1) in human umbilical vein endothelial cells (HUVECs), and TF expression in peripheral blood mononuclear cells (PBMCs). Additionally, we examined the mechanism by which CO exerts its effects. MATERIALS AND METHODS HUVECs were pretreated with 50 μM CORM-2 for 3 hours, and stimulated with tumor necrosis factor-α (TNF-α, 10 ng/ml) for an additional 0-5 hours. PBMCs were pretreated with 50-100 μM CORM-2 for 1 hour followed by stimulating with lipopolysaccharid (LPS, 10 ng/ml) for additional 0-9 hours. The mRNA and protein levels were determined by RT-PCR and western blotting, respectively. RESULTS Pretreatment with CORM-2 significantly inhibited TNF-α-induced TF and PAI-1 up-regulation in HUVECs, and LPS-induced TF expression in PBMCs. CORM-2 inhibited TNF-α-induced activation of p38 MAPK, ERK1/2, JNK, and NF-κB signaling pathways in HUVECs. CONCLUSIONS CORM-2 suppresses TNF-α-induced TF and PAI-1 up-regulation, and MAPKs and NF-κB signaling pathways activation by TNF-α in HUVECs. CORM-2 suppresses LPS-induced TF up-regulation in PBMCs. Therefore, we envision that the antithrombotic activity of CORM-2 might be used as a pharmaceutical agent for the treatment of various inflammatory conditions.
Collapse
Affiliation(s)
- Keiko Maruyama
- Department of Clinical Laboratory Science, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Repessé Y, Dimitrov JD, Peyron I, Farrokhi Moshai E, Kiger L, Dasgupta S, Delignat S, Marden MC, Kaveri SV, Lacroix-Desmazes S. Heme binds to factor VIII and inhibits its interaction with activated factor IX. J Thromb Haemost 2012; 10:1062-71. [PMID: 22471307 DOI: 10.1111/j.1538-7836.2012.04724.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Heme is a redox active macrocyclic compound that is released upon tissue damage or hemorrhages. The extracellular release of large amounts of heme saturates scavenging heme-binding proteins. Free heme has been proposed to affect coagulation and has been co-purified with the factor VIII (FVIII)-von Willebrand factor (VWF) complex. The sites from which heme is released upon injury overlap with the sites to which FVIII is targeted for performing its hemostatic functions. OBJECTIVES To investigate the interaction of heme with FVIII and the consequence for the procoagulant activity of FVIII in vitro. METHODS AND RESULTS Heme bound to several sites on FVIII with high apparent affinity. Heme-binding inhibited FVIII procoagulant activity in a dose-dependent manner. FVIII inactivation in the presence of saturating amounts of heme implicated a reduced interaction of FVIII with activated FIX, as shown by ELISA, surface plasmon resonance and fluorescence quenching. Heme-mediated inactivation of FVIII was prevented by VWF, but not by human serum albumin, a heme-binding protein known for its protective activity in hemolytic conditions. CONCLUSIONS Our data identify FVIII as a novel heme-binding protein. Occupation of high affinity heme-binding sites on FVIII at low concentrations of free heme did not inactivate FVIII. Conversely, large molar excesses of heme over FVIII, which correspond to conditions of extensive heme release, inhibited FVIII activity in vitro. It remains to be demonstrated whether, under such conditions, heme-mediated modulation of the activity of FVIII plays some role in the regulation of coagulation.
Collapse
|