1
|
Liu Y, Lv Z, Zhou S, Fu Z, Wang Y, Yi L, Li X, Wang Y, Hu S, Zhou Z, Chen Y. A smartwatch sphygmomanometer-based model for predicting short-term new-onset hypertension in individuals with high-normal blood pressure: a cohort study. Clin Exp Hypertens 2024; 46:2304023. [PMID: 38346228 DOI: 10.1080/10641963.2024.2304023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVES The objective was to utilize a smartwatch sphygmomanometer to predict new-onset hypertension within a short-term follow-up among individuals with high-normal blood pressure (HNBP). METHODS This study consisted of 3180 participants in the training set and 1000 participants in the validation set. Participants underwent both ambulatory blood pressure monitoring (ABPM) and home blood pressure monitoring (HBPM) using a smartwatch sphygmomanometer. Multivariable Cox regressions were used to analyze cumulative events. A nomogram was constructed to predict new-onset hypertension. Discrimination and calibration were assessed using the C-index and calibration curve, respectively. RESULTS Among the 3180 individuals with HNBP in the training set, 693 (21.8%) developed new-onset hypertension within a 6-month period. The nomogram for predicting new-onset hypertension had a C-index of 0.854 (95% CI, 0.843-0.867). The calibration curve demonstrated good agreement between the nomogram's predicted probabilities and actual observations for short-term new-onset hypertension. In the validate dataset, during the 6-month follow-up, the nomogram had a good C-index of 0.917 (95% CI, 0.904-0.930) and a good calibration curve. As the score increased, the risk of new-onset hypertension significantly increased, with an HR of 8.415 (95% CI: 5.153-13.744, p = .000) for the middle-score vs. low-score groups and 86.824 (95% CI: 55.071-136.885, p = .000) for the high-score vs. low-score group. CONCLUSIONS This study provides evidence for the use of smartwatch sphygmomanometer to monitor blood pressure in individuals at high risk of developing new-onset hypertension in the near future. TRIAL REGISTRATION ChiCTR2200057354.
Collapse
Affiliation(s)
- Yuqi Liu
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhonghua Lv
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Shanshan Zhou
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zihao Fu
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Yifei Wang
- Medical data center, Chinese PLA General Hospital, Beijing, China
| | - Li Yi
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaolong Li
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Ying Wang
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shunying Hu
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhirui Zhou
- Radiation Oncology Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yundai Chen
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Liu J, Li Y, Zhang X, Bu P, Du X, Fang L, Feng Y, Guo Y, Han F, Jiang Y, Li Y, Lin J, Liu M, Liu W, Long M, Mu J, Sun N, Wu H, Xie J, Xie J, Xie L, Yu J, Yuan H, Zha Y, Zhang Y, Zhu S, Wang J. Management of nocturnal hypertension: An expert consensus document from Chinese Hypertension League. J Clin Hypertens (Greenwich) 2024; 26:71-83. [PMID: 38126623 PMCID: PMC10795100 DOI: 10.1111/jch.14757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
Nocturnal hypertension is highly prevalent among Chinese and Asian populations, which is mainly attributed to high salt intake and high salt sensitivity. Nocturnal hypertension increases the risk of cardiovascular and all-cause mortality, independent of daytime blood pressure (BP). However, it can usually be detected by 24-h ambulatory BP monitoring, rather than routine office or home BP measurement, thus is often underdiagnosed in clinical practice. Currently, no specific guidance is available for the management of nocturnal hypertension in China or worldwide. Experts from the Chinese Hypertension League summarized the epidemiologic and pathophysiologic characteristics and clinical phenotype of nocturnal hypertension and provided consensus recommendations on optimal management of nocturnal hypertension, with the goal of maximally reducing the cardiovascular disease risks. In this consensus document, 24-h ABPM is recommended for screening and diagnosis of nocturnal hypertension, especially in the elderly, patients with diabetes, chronic kidney diseases, obstructive sleep apnea and other conditions prone to high nocturnal BP. Lifestyle modifications including salt intake restriction, exercise, weight loss, sleep improvement, and mental stress relief are recommended. Long-acting antihypertensive medications are preferred for nocturnal and 24-h BP control. Some newly developed agents, renal denervation, and other device-based therapy on nocturnal BP reduction are evaluated.
Collapse
Affiliation(s)
- Jing Liu
- Peking University People's HospitalBeijingChina
| | - Yan Li
- Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xinjun Zhang
- West China Hospital of Sichuan UniversityChengduSichuanChina
| | - Peili Bu
- Qilu Hospital of Shandong UniversityJinanShandongChina
| | - Xueping Du
- Yuetan Community Health Service CenterFuxing HospitalCapital Medical UniversityBeijingChina
| | - Lizheng Fang
- Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Yingqing Feng
- Guangdong Provincial People's HospitalGuangzhouGuangdongChina
| | - Yifang Guo
- Hebei General HospitalShijiazhuangHebeiChina
| | - Fei Han
- The First Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Yinong Jiang
- The First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yuming Li
- T International Cardiovascular HospitalTianjinChina
| | - Jinxiu Lin
- The First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Min Liu
- Henan Province People's HospitalZhengzhouHenanChina
| | - Wei Liu
- Beijing HospitalBeijingChina
| | - Mingzhi Long
- The Second Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jianjun Mu
- The First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | | | - Hao Wu
- School of General Practice and Continuing Education, Capital Medical UniversityBeijingChina
| | - Jianhong Xie
- Zhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Jingyuan Xie
- Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Liangdi Xie
- The First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| | - Jing Yu
- Lanzhou University Second HospitalLanzhouGansuChina
| | - Hong Yuan
- The Third Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yan Zha
- Guizhou Provincial People's HospitalGuiyangGuizhouChina
| | - Yuqing Zhang
- Fuwai HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Shanzhu Zhu
- Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jiguang Wang
- Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | | |
Collapse
|
3
|
Lee WL, Danaee M, Abdullah A, Wong LP. Is the Blood Pressure-Enabled Smartwatch Ready to Drive Precision Medicine? Supporting Findings From a Validation Study. Cardiol Res 2023; 14:437-445. [PMID: 38187511 PMCID: PMC10769613 DOI: 10.14740/cr1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/08/2023] [Indexed: 01/09/2024] Open
Abstract
Background The popular wrist-worn wearables recording a variety of health metrics such as blood pressure (BP) in real time could play a potential role to advance precision medicine, but these devices are often insufficiently validated for their performance to enhance confidence in its use across diverse populations. The accuracy of BP-enabled smartwatch is assessed among the multi-ethnic Malaysians, and findings is discussed in comparison with conventional automated upper-arm BP device. Methods Validation procedures followed the guidelines by the Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Universal Standard (ISO 81060-2:2018). Quota sampling was employed to obtain eligible patients with normal and abnormal BP as per guideline. The measurements of BP were taken at wrist using HUAWEI WATCH D (test BP); and the readings were assessed against reference BP by the mercury sphygmomanometer. Agreement statistics and linear regression analyses were performed. Results BP measurements (234 data pairs) from 78 patients that fulfilled AAMI/ESH/ISO protocol were analyzed. The BP readings taken by the HUAWEI WATCH D were comparable to reference BP by sphygmomanometer based on 1) Criterion 1: systolic blood pressure (SBP) = -0.034 (SD 5.24) and diastolic blood pressure (DBP) = -0.65 (SD 4.66) mm Hg; and 2) Criterion 2: SBPs = -0.034 (SD 4.18) and DBPs = -0.65 (SD 3.94) mm Hg. Factors of sociodemographic characteristics, anthropometric measurements, cardiovascular comorbidities, and wrist hair density were not significantly associated with the mean BP differences. Conclusions HUAWEI WATCH D fulfilled criteria 1 and 2 of the AAMI/ESH/ISO Universal Standard (ISO 81060-2:2018) guidelines. It can be recommended for clinical use across a wider population. The rich data from real-time BP measurements in concurrent with other health-related parameters recorded by the smartwatch wearable offer opportunities to drive precision medicine in tackling therapeutic inertia by personalizing BP control regimen.
Collapse
Affiliation(s)
- Wan Ling Lee
- Department of Nursing Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mahmoud Danaee
- Department of Social and Preventive Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Adina Abdullah
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Li Ping Wong
- Department of Social and Preventive Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Hoshide S, Mogi M, Kario K. How do we tackle nighttime blood pressure? Hypertens Res 2023; 46:2262-2263. [PMID: 37794247 DOI: 10.1038/s41440-023-01378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 10/06/2023]
Affiliation(s)
- Satoshi Hoshide
- Division of Cardiovascular Medicine, Jichi Medical University School of Medicine, Tochigi, Japan.
| | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
5
|
Williams GJ, Al-Baraikan A, Rademakers FE, Ciravegna F, van de Vosse FN, Lawrie A, Rothman A, Ashley EA, Wilkins MR, Lawford PV, Omholt SW, Wisløff U, Hose DR, Chico TJA, Gunn JP, Morris PD. Wearable technology and the cardiovascular system: the future of patient assessment. Lancet Digit Health 2023; 5:e467-e476. [PMID: 37391266 DOI: 10.1016/s2589-7500(23)00087-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 02/26/2023] [Accepted: 04/19/2023] [Indexed: 07/02/2023]
Abstract
The past decade has seen a dramatic rise in consumer technologies able to monitor a variety of cardiovascular parameters. Such devices initially recorded markers of exercise, but now include physiological and health-care focused measurements. The public are keen to adopt these devices in the belief that they are useful to identify and monitor cardiovascular disease. Clinicians are therefore often presented with health app data accompanied by a diverse range of concerns and queries. Herein, we assess whether these devices are accurate, their outputs validated, and whether they are suitable for professionals to make management decisions. We review underpinning methods and technologies and explore the evidence supporting the use of these devices as diagnostic and monitoring tools in hypertension, arrhythmia, heart failure, coronary artery disease, pulmonary hypertension, and valvular heart disease. Used correctly, they might improve health care and support research.
Collapse
Affiliation(s)
- Gareth J Williams
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Abdulaziz Al-Baraikan
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Frank E Rademakers
- Faculty of Medicine, Department of Cardiology, KU Leuven, Leuven, Belgium
| | - Fabio Ciravegna
- Dipartimento di Informatica, Universitàdi Torino, Turin, Italy
| | - Frans N van de Vosse
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Allan Lawrie
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Alexander Rothman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Academic Directorate of Cardiothoracic Services, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Euan A Ashley
- Department of Medicine, Stanford University, Stanford, CA, US
| | - Martin R Wilkins
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Patricia V Lawford
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Stig W Omholt
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; School of Human Movement & Nutrition Sciences, University of Queensland, QLD, Australia
| | - D Rodney Hose
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Timothy J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, UK; Academic Directorate of Cardiothoracic Services, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; BHF Data Centre, Health Data Research UK, London, UK
| | - Julian P Gunn
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, UK; Academic Directorate of Cardiothoracic Services, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Paul D Morris
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, UK; Academic Directorate of Cardiothoracic Services, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|
6
|
Li MX, Li Y. Office and out-of-office blood pressure measurement using an all-in-one device. Hypertens Res 2023; 46:1058-1060. [PMID: 36690810 DOI: 10.1038/s41440-022-01154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/24/2023]
Affiliation(s)
- Ming-Xuan Li
- Department of Cardiovascular Medicine, The Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Cardiovascular Medicine, The Shanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|